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ABSTRAC,T 
1 

A body in the upper atmosphere or  in space wil l  acquire an electric 
charge, or potential, which must be known to determine the motion of 
micrometeoxites, the drag on earth satellites, and tc assess the behavior 
of certain experiments on satellites. 

The equation for ion and electron currents to a sphere are availa- 
ble in the l i terature for small bodies. Fo r  large bodies, an estimate of 
the influence of the plasma sheath is required in an attractive field. 
Poisson's equation has been solved numerically for  high-velocity 
spheres, and the ion current obtained by an analysis of the ion's dis-  
tance of closest  approach. Photoemission i s  an important charging 
mechanism for bodies in sunlight. Measurements of photoelectric yields 
'are reviewed and compared with photocurrents measured above the at- 
mosphere. Secondary electron emissionupon energetic particle impact 
may also be an important mechanism, especial in the earth 's  radiation 
belts. The effects of cosmic rays,  radioactivity, thermionic and field 
emission, colliFions with dust grains, and the influence of radio- 
frequency electric fields a r e  generally negligible. A magnetic field 
induces a potential gradient in a moving body; in addition, the res t r ic -  
tion of electrons to a spiralling motion along the field line decreases 
the body's effective collection area. 

These charging mechanisms are evaluated for conditions in the 
upper atmosphere and in interplanetary space, and are combined into 
expressions from which the equilibrium potential may be determined. 
In the ionosphere the equilibrium potential is typically a few tenths of 
a volt negative. A t  higher altitudes the potential may become positive 
in the sunlight as photoemission predominates over positive ion col- 
lection. In the earth 's  magnetosphere the potential is sensitive to the 
ratio of electron flux to photoemission, and may vary widely. Positive 
values are limited to a few volts, but large negative values are possible, 
In interplanetary space positive potentials due to both photoernis sion 
and the solar wind protons are expected. 

The equilibrium potential of the satellite Explorer VI11 has been: 
measured in both darkness and sunlight. There is general agreement 
with theoretical values at higher altitudes. At low altitudes the meas- 
ured potentials are more negative than anticipated. This is shown to he 
due to a radio-frequency plasma impedance experiment carr ied on the 
satellite, 
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CHAPTER I 

INTROD17 Is TION 

1. The Concept of Equilibrinm Charge. A body in the upper atmosphere 

or in space, such as a satellite, a meteor,  or a dust grain, is continually 

-- 

bombarded by environmental particles of which a pxoportion will be 

electrically charged, such as electrons,  ions or cosmic rays. When 

such an encounter occurs there is, in general, a t ransfer  of charge ei.ther 

to or from the body. OtLzr processes may also occur that can effect a 

charge t ransfer-  Incident photons of sufficient energy will induce the 

emission of photoelectrons. Under the proper conditions thermal cmis  - 
sion or field emission of electrons could occur. Other mechanisms of 

charge transfer include radioactivity of the material composing the body, 

secondary emission of electrons and collisions with other bodies such 

as micrometeors (dust grains) 

The rate at which charge P i * - m ~ P e r  pi-oceeds for a given mechanism 

depends hotkr upon characterist ics of the body such as its surface a rea  

and material and on the environmental conditions such as the number 

density of charged particles. In particular, this rate of change of charge 

on the body depends on the net charge already residing on the body. This 

is merely saying that the motion of charged particles in  the vicinity of 

the body is influenced by the e lecuic  field arising from the charge dis- 

tributed on the body. A positive charge will at tract  electrons and repel 

ions. Secondary o r  photoelectrons may not escape but may return to the 

body. 



These statements may be summarized in a differential equation 

for the charge on such a body. If we let I denote the total current '& 

the body, we have 

I = - =  dQ f (Q, body c h a r a c t e r i s t i c s ,  environmental conditions) (1.1) 
d t  

where Q is the total chazge on the body. A complete understanding of 

the charge a s  a fuT ction of t ime requires a solution of (1.1) where the 

ri.ght hand side expresses the sum of the various currents  to the body 

as a function of Q and t. However, it turns out that typical charging 

o r  discharge times a r e  small compared with the t ime in which signifi- 

cant changes in the environmental conditions usually occur. For  ex- 

ample, the period of revolution o r  tumbling of a satellite will be on the 

order  of a second o r  greater ,  whereas discharge t imes will be oil the 

order  of milliseconds o r  less, as will be shown later when the various 

mechanisms a r e  discussed in detail. Consequently, it is a good approx- 

imation to assume that the environmental conditions remain constant 

during the time that it takes for a body to acquire a charge; hence, the 

right hand side of equation (1.1) will not be explicitly dependent upon 

time. One exception to this assumption occurs when the effect of radio 

frequency voltages on current collection is considered, as discussed in 

Chapter V. 

Wth  this approximation it is convenient to discuss equation (1.1) 

by referring to a ttphase diagram" similar to the kind employed in de- 

ecribing the behavior of oscillatory systems. Figure l is such a plot 

of the current I versus charge Q for a hypothetical but typical body in 
" 

space. Such a curve is typical, for instance, of the case in which the 

positive current is due to positive ion collection and the negative cur- 

rent is due to electron collection from the environmental plasma. 
9 



+ I =dQ/dt 
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Figure 1 .  Phase Diagram Illustrating Typical Dependence 

of Current on Charge 

3 



The behavior of the system can be described by the motion of the 

representative point P, For positive I ,  P will move to the right, as 

shown by the arrow indicating an increase in Q .  For  a negative current 

P will move to the left. When P ar r ives  at the point on the abscissa 

marked QL its motion will cease; the current  is zero and hence Q re- 

mains constant: QE is the so-called equilibrium charge. It is inportant  . 

to note that this is a point of stable equilibrium, since if  P is displaced 

from QE the direction of the arrows is such a s  to res tore  the system to 

equilibrium. 

The curve in Figure 1 is also typical of most natural current mech- 

anisms in that it is monotonic - the slope of the curve is everywhere 

negative. A negative slope indicates a positive (but not necessarily 

linear) resistance between the medium and the body, with a steeper slope 

indicating a lower resistance. 

The existence of a stable equilibrium point depends upon this re- 

sistive character of the charging mechanisms involved. To see this, 

consider a hypothetical mechanism exhibiting 'negative ' resistance. 

Such a mechanism is physically feasible although unlikely. For  example, 

a material  with secondary emission characterist ics can be imagined 

with a secondary emission yield which increases at some threshold 

energy of the incident pr imary electrons to a value greater than unity 

with increasing energy. If, in addition, the secondaries were all  emitted 

with an energy distribution centered at an energy sufficient for escape, 

one would have a phase diagram similar to that shown in Figure 2. 

This system has three possible equilibrium points a s  indicated by - 
Q1, Q2, Q, . Only two of these axe stable, however. The point Q2 on the 

negative resistance portion of the: carve is unstable. Even though dQ/dt 

4 
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is zero  at Q, , a slight fluctuation of the charge will cause the system 

to move to one of the two stable equilibrium points as indicated by the 

direction of the arrows.  

rhe  question ar ises:  might not a current  mechanism be possible 

such that an oscillatory solution could be obtained? It is difficult to 

think of any natural mechanism of this type; but it would be simple to 

construct such a device which could be placed in a satellite. Fo r  ex- 

ample, an electric field meter  to sense the polarity and magnitude of 

the satellite charge could be combined with an ion gun in such a way 

that the curve of current versus charge of Figure 3 would be obtained. 

The ion gun would be turned on when Q and turned off when Q = 

Q,. If the initial (non-equilibrium) charge were sufficiently negative 

the equilibrium point QE would never be reached; the ion gun would 

= Q, 

cycle on and off as the representative point P travels around the closed 

loop ABCD. This demonstrates the fact that for an oscillatory solution 

of ( l . l ) ,  when the righthand-side does not explicitly depend upon time, 

the current must be at least double-valued a s  a function of Q. In other 

words, the current  mechanism must involve at least two states in such 

a way that the system can alternate between the two o r  more states. 

2. Applications of Equilibrium Char, iations. Knowledge of 

the equilibrium charge on a body is irr. o several  areas of in- 

vestigation. In the ionosphere and also in &.,Lerplanetary and interstellar 

space the flux of ions and electrons to a body such as a dust grain con- 

stitutes a loas mechanism for the charged particles in the medium. 

Electrons striking the body a r e  usually captured, while ions in striking 

the body ordinarily pick up an electron and rebound as a neutral atom 

or molecule. Since the fluxes of ions and electrons a r e  influenced by 

1 
d 

6 
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the grain's charge, this information is necessary to determine the 

ionization balance of the medium. 

Spitzer has shown that photoemission from interstellar grains is a 

source of kinetic energy for the interstellar medium.2 Since the amount 

of energy carr ied a v y  from the grain depends upon the grain's charge, 

this quantity needs to be estimated. 

In interplanetary space the motion of micrometeorites,  if they a r e  

charged, will be influenced by the interplanetary magnetic field originat- 

ing fr,om the sun,3p4 and also by the earth 's  magnetic field. 5 

The electric charge on a satellite increases the atmospheric drag 

by attracting ions of opposite polarity to the satellite which otherwise 

would not have impacted. Momentum is also transferred to ions which 

do not impact directly but z r e  deflected by the satellite's electric 

field.6v7s8 It is also possible that the motion of a charged satellite 

through the ionosphere will excite plasma waves which can ca r ry  away 

energy from the satellite. 9810 

The charge on a rocket o r  satellite may have an important influence 

on the behavior of experiments designed to measure the properties of 

charged particles in the atmosphere. Johnson and Meadows have dis- 

cussed the effect of a vehicle charge on the performance of a rocket- 

borne ion mass spectrometer.11 The interpretation of data f rom ion 

and electron traps and from Langmuir probes must take into account 

the effects of the potential betweeii the vehicle and the medium. 12,13 

Conversely, the vehicle potential may be determined from the charac- 

terist ics of the data f rom such experiments, a.8 will be illustrated 

later. 

It is frequently advant-geous to discuss the charge on a body in 

te rms  of the corresponding potential .Jvith respect to the surrcunding 



medium. The charging currents  to a body depend upon the body's poten- 

tial rather than charge; also, the potential is  more easily measured o n  

a satellite. The relation between the equilibrium charge and potential - 
i.e. the body's capacitance - is ,  in gene ra l ,  a strong function of t h e  en* 

. ironment, which is  another way of say ing  that a body in a pln,r;rna behave. 

quite differently electrically from a body in a vacuum. For exarrlple, 

consider Poisson's equation ir, spherical  coordinates for the potential 

4,  where the space charge p , is given by (See also Appendix A , )  

(1.2) 

Here No is the ion o r  electron density at  a great distance, e is the  ele- 

mentary charge, k is Boltzmam's constant and T the plasma temper- 

ature, The first t e rm gives the ion density and the  second the electron 

density in front of a fast moving spherical satellite with a mgative 

potential, Q s R .  If c < 1, we may write Poisson's equation as 

where E~ is the permittivity. 

The solution of (1.3) is the well-known Debye potential. 

where R is the satellite radius and L iz the Debye length, 

9 



The tkapacitancelt may be determined from the field at the eurfacs 

of the satellite and the potential G. We obtain 

o r  

This is siinply the capacitance for  two concentric spheres with a sep- 

aration distance L . Thus the Debye length, L, gives the screening dis- 

tance or sheath thickness about a charged body in a plasma. 

The subject of this investigation is the value of the equilibrium 

potential of a body in the u3per atmosphere and in interplanetary space 

a s  a function of environmental conditions and various body characteris-  

tics. Only naturally occurring mechanisms will be considered, and it is 

anticipated that for a body in a given environment there will exist 

only one stable eqriilibrium point. This investigation will be c o x e r n e d  

mainly with simple bodies in the sense that the body surface is consid- 

ered to be a good conductor. Clearly one can imagine a satellite con- 

sisting of two metallic portions connected by an insulator such that each 

portion would reach its own independent equilibrium potential. Indeed, 

such "double probes1! have been treated in the literature and flown in 

the upper atmosphere.l4,15 Recently some satellites have been coated 

with thermal blankets which are also good electric insulators, so that 

each point on the outer surface would reach its ovn equilibrium poten-* 

tial determined by the local conditions, orientation of the surface a t  

that point, e k .  

10 



Chapter I1 surveys what has been done on this problem and indicates 

its present status. Chapters 111, IV and V contain discussions of various 

mechanisms of charge acquisition, and Chapter VI examines the effects 

of a magnetic field. Chapter VI1 combines the results of Chapters 111 

through VI to calculate expected potentials for a body in various environ- 

ments. Finally, Chapter VI11 presents the resul ts  of measurements of 

satellite potential made on Explorer VI11 and compares them with the 

* predicted calculations. 

11 
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CHAPTER I1 

HISTORICAL SUhVEY AND PRESENT 

STATUS O F  THE PROBLEM 

1. Historic 1 Survey. Apparently the first paper to disctd the problem 

of the equilibrium electric charge to be expected on a body in space was 

one by Jung in 15137, entitled !'The Origin of Solid Particles in Inter-  

stellar Space." 

electrons to an interstellar grain as a function of the potential of the 

16 Jung obtained equations for fluxes of positive ions o r  

grain. He concluded that in interstellar space the effective processes 

are photoemission and electron accretion. An efficiency {yield) of 100% 

was assumed for photons with sufficient energy to remove an electron 

completely from the solid particle. He arrived at  values for the poten- 

tial of about one to a few volts positive. 

Spitzer in 1941 took up the problem in a paper, "The Dynamics of 

the Interstellar Msdiu-m. 

on charging an interstellar dust grain a r e  negligible. The effects of 

grain collisions with protons and electrons along with photoerrJission 

were considered. Using an efficiency of he concluded that photo- 

emission does not predominate in its effect on the grain charge in inter-  

stellar space. In 54 I1 regions (where hydrogen is ionized and n, equals 

about l /crn3) he obtained a grain potential of about -2 volts independent 

of its composition o r  radius. In H I regions where ne is smaller ( loe3 / 

cm3 and hydrogen is not ionized) the effect of photoemission is notice- 

able and reduces the potential by about 50% but does not make it positive. d 

The charge on a grain in the vicinity of a s t a r  was not considered. The 

effects of dust in "de -ionicing," (providing a recombination surface for 

ions) was mentioned but not discussed in detail. 

He showed that the effects of cosmic rays 
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Cernuschi cri t icized Jung for  using too high a value for  the photo- 

electric yield, and both Spitzer and Jung for assuming metallic grains 

only.18 Cernuschi claimed that not every electron incident on the par-  

ticle surface is captured, especially for dielectric substances, and 

assumed a sticking probability of 10% for small  negative potentials. In 

H I1 regions the grains a r e  then slightly positive near s t a r s  and slightly 

negative in regions far from s t a r s  (-0.7 volts). In H I regions the poten- 

tial is positive - about 0.8 volts. For  dielectric materials the potential 

is very nearly zero o r  perhaps slightly positive. 

Spitzer treated the subject very thoroughly in "The Temperature of 
2 Interstellar Matter , ' I  considering the following factors in detail : 

(1) The sticking probability for electrons, which he takes to be between 

0.1 and 0.5, depending on the nature of the substance; (2) The neutral- 

ization probability for ions, which because of lack of information could 

be anywhere from 1 to lo-' ; (3) The fraction of available photon energy 

converted to photoelectron kinetic energy. This involved an average 

over the photoelectron kinetic energy spectrum. H e  arrived at a figure 

of 0.55 for this fraction representing a value midway between the em- 

pirical value of 0.45 and the theoretical value of 0.67;(4) The threshold 

frequency which corresponds to the work function and is dependent on 

the nature of the Substance; ( 5 )  The photoelectric efficiency o r  yield 

which is a function of both the incident frequency and the substance; 

(6) And finally, the relative absorption c ross  section €or photons which 

differs f rom the geometrical croBe section for particles with diameters 

comparable to the 

used to determine 

factors as well as 

photons. 

# 

photon length. H e  obtained equations which can be 

the equilibrium electric charge involving all these 

the density and frequency distribution of interstellar 
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In a companion paper Spitzer and Savedoff in 1950 concluded that 

if the sticking probability for electrons is equal to the neutralization 

probability for ions, then in H I1 regions the potential V = -2.2 ( T / l O , O O O O )  

volts for non-metallic substances.' 

is l e s s  than 10-4, then the potential may reach -3 volts where field 

emission of electrons is likely to occur. Fo r  highly photosensitive 

materials (which a r e  unlikely) positive charges a r e  expected, especially 

close to hot stars. Metallic surfaces have moderate potentials as com- 

puted by Cernuschi. In H I regions low temperatures for the gas yield 

low potentials i f  photoemission is weak - only a few electrons per grain. 

Especially sensitive o r  metallic grains may h3ve positive potentials up 

to 10 volts i f  photoemission is important. 

If the neutralization probability 

Johnson and Meadows postulated a negative rocket potential of 20 

volts above 120 km to explain the results of an ion mass spectrometer 

experiment flown in 1954.11 They suggested that the potential could be 

due to energetic electrons or to absorption of X-rays and subsequent 

ionization of the gas evolving from the rocket. 

The first calculation of electric charge on a macroscopic body was 

Anticipating the orbiting of earth 6 apparently made by Lehnert in 1956. 

satellites, Lehnert took into account the increased positive ion current 

to the satellite on its forward surface due to the high satellite to ion 

velocity ratio. The resulting potential was about -0.7 to -1.0 volts. 

Photoemission may change this value depending on the type of surface. 

The electric field caused by polarization of the satellite in the earth 's  c 

magnetic field was said to be small  compared to the field from the net 

charge on the satellite. The satellite was shielded electrically at about 

&ne Debye length. 
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In 1956 Singer discussed the charge on micrometeorites near the 

5 earth. He assumed a power law for the photon energy distribution and 

balanced photoemission against electron accretion. H e  computed a 

potential of -8 volts in the dark (neglecting the ram effect on the positive 

ions). Assuming a mean energy of 1.5 volts for electrons and a photo- 

electric yield of unity, he obtained a potential of about 100 volts positive 

for particles in the sunlight. 

In 1957 Opik calculated the expected charge on interplanetary dust 

particles.20 He assumed that the radiation effective for photoemission 

comes largely from the solar corona rather than the photosphere. 

Rather than estimating photoemission currents  f rom assumed yields 

and work functions, he used Saha's equation for an ionization equilibrium 

. applied to a diluted solar corona and the solid grains. He arrived at 

values of grain potential ranging from 50 to 220 volts positive for inter- 

planetary electron densities from one to 600 per cm3. 

In 1957 Jastrow and Pearse estimated the charge on a satellite in 

order to find the additional drag.' They neglected photoemission but 

took into account the ram effect of the satellite's velocity on the positive 

ion current plus the attraction of a negative satellite for positive ions. 

The equilibrium potential was computed to be from -10 volts on the 

night side of the earth to -60 volts on the day side because of the high 

energy assumed for the electrons (1.5 volts with a tail at higher ener- 

gies). They showed that the satellite is effectively screened at a dis- 

tance of a few Debye lengths. 
21 In anticipation of the first Soviet Sputnik, Gringauz and Zelikman 

in 1957 discussed the distribution of charged particles around a satellite 

and derived an equation for the equilibrium satellite potential taking 

into account the satellite Is ve1seit.j and photoemission: 
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Herek  is Boltzmann's constant, Te the electron temperature,  e the 

value of the electron charge, and le, I, and Id the electron current,  

ion current and photoemission current to the satellite. The induced 

potential gradient caused by the satell i te 's  motion in the ear th 's  mag- 

netic field was estimated. 

In a companion paper Imyanitov discussed the problems of meas-  

uring an electric field in the ionosphere from a satellite.22 The field 

due to the charge on the satellite must be eliminated; its magnitude 

was estimated at several  volts/cm by computing the satellite potential 

in a manner similar to that of Gringauz and Zelikman and estimating 

the sheath thickness f rom plasma probe theory. 

Fred  Whipple in 1958 used Spitzer 's  method of computation and 

Hintesegger's data on s i  .I: ultraviolet flux and yield.23 With a mean 

wavelength of 1000 A and an efficiency of 0.2, he obtained a photoemis- 

sion rate of 5.7 X 10'' electrons/cm2 sec (9.1 X lo-' amp). If the 

electron temperature is 500,000°, then the potential is zero for meteoric 

dust i f  the electron density is 130/cm3. 

L. 

Chang and Smith in 1959 derived an expression for satellite poten- 

tial by balancing the positive ion current (simple r a m  expression plus 

a first order  correction) against the electron current. 

may also be included, bid the authors concluded that i ts  eifect was  neg- 

ligible. However, their expression for  photoemission is incorrect in 

that there is no place in the derivation where the actual solar flux is 

introduced. 

24 Photoemission 
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Beard and Johnson in 1960 discussed the interaction of a satellite 
0 with the earth 's  magnetic field. The induced potential gradient may 

be as high as 0.2 volt8 per meter which affects the distribution of the 

electron flow to the satellite surface and may also affect measurements 

of satellite pctential. Equilibrium potentials (at the midpoint of the 

satellite) are on the order  of one volt negative for an electron temper- 

ature equivalent to 0.1 volts. Photo- and secondary emission were felt 

to be unimportant. 

Results of measuring the potential of Sputnik I11 have not been re- 

ported in detail. A summary of available statements indicates a neg- 

ative potential varying from -2  volts to -7  volts with altitude and with 

day -night conditions. 25,26 

Chopra in a review article found an expression for the potential of 
- .  

a body a t  rest: 

where m is the particle mass, the subscripts referring to ions o r  elec- 
10 trons. If photoemission predominates over ion collection, then 

where ne ve and nd refer to the plasma electron flux and photoelectron 

flux respectively. At satellite velocities the ion flux is increased, but 

he believed that "at least in the outer 'parts of the te r res t r ia l  atmosphere 

and in the interplanetary space, the photoelectric effect is important." 

He observed that surface phenomena such as secondary emiseion a r e  

unimportant for particle impacts at ordinary gae temperatures. In a 



paper in 1961, Beard and Johnson discussed ionospheric limitations on 

attainable satellite  potential^.'^ Higher negative than positive potentials 

a r e  attainable by ejecting positive ions from a source in the satellite 

because of the limited mobility of environmental positive ions constitut- 

.'. ing the return current. 

The probability distribution for charges on lunar dust grains was 

considered by Grannis.28 However, he seems to have confused the 

chqrge on a grain with the rate  a t  which the grain acquires the charge 

and in addition did not take into account the effect of the grain's  charge 

on its rate of charging. 

The latter cr i t ic ism was also made of Grannis'  paper by Walker 

who derived a different probability distribution for the charges on lunar 

grains. 

the lunar surface has a charge proportional to the exposed surface 

area. 30 No large potential differences can exist because free electrons 

29 In another paper Singer and Walker concluded that dust on 

above the surface conduct cur ren ts  efficiently. Dust ejected f rom the 

surface by meteors may become charged by the same processes that 

charge dust in interplanetary space. 

In a companion paper Singer and Walker calculated the screening 

effect of photoelectronu on bodies in interplanetary space. 31 Photo- 

emission current  density was computed using Hinteregger ' s  results on 

the number of solar photons with energies greater than 8 eV. The yield 

was assumed to be 1 for want of better information. When applied to 

the lunar surface a potential of about plus 20 volts wzs obtained. 

Gdalevich has reported some results of electric field meas:*aements 

from rockets launched in 1957 and 1958. 32'33 He found a field of 0.2 

to 3 volts/cm at the rocket surface corresponding for the most part  to 



a negative charge,  although for portions of the trajectory the charge 

was positive. He also has derived expressions for the rocket potential 

similar to those of Gringauz and Zslikman and of Chopra. Imyanitov, 

in reporting results f rom more recent rockets, found rather high neg- 

ative potentials (several  volts) which led him to assume that a consider- 

34 able number of fast negative particles was present in the atmosphere. 

Sagalyn and others have also reported negative rocket potentials, from 

-0.4 volts at 150 km to -1.7 volts at450 km. 35 

Shen and Chopra have considered the problems accompanying 

36 thermionic emission from a hot body in a plasma. 

obtained for the potential resulting from the balance between thermionic 

emission and electron accretion. 

Solutions were 

Rawer in a recent article has discussed the positive and negative 

.particle fluxcs to a satellite.37 He has some good comments on the 

inductive effect of the earth 's  magnetic field, but states that the mag- 

netic field has no effect on the isotropy of the electron flux'apart f rom 

the induced polarization. The effect of photoemission is discussed 

carefully with reliable values for the solar flux and yield. He points 

out that in regions of low electron density the satellite potential may 

be determined by strong emission linee such as Lyman alpha of H or 

He.' Finally, both Walker and Bettinger discuss equilibrium potential 

in recent diseertations, 38s39 Walker finds a transcendental equation 

e 
c 

for the potential of a sphere at r e s t  in a plasma. Bettinger computes 

the equilibrium potential for an insulated probe that emits electrone 

thssmallyv He neglects photoemission but assumes that there is a high 
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energy tail to the normal Maxwell-Aoltzmann velocity 2istribution of 

electrons. The resul ts  of a rocket flight carrying the prcbe a r e  p r s -  

sented and discussed in t e rms  of the number of high energy ejkctrons 

necessary to obtain the observed values of -1 to -4.5 volts. 

2. Present  Status of the Problem. It is apparent that a considerabla 

amount of attention has been devoted in the l i terature to the problem of 

the equilibrium potential of a body in space. However, almost all of 

the treatments have been restricted to a consideration of two o r  perl-aps 

three mechanisms that the author considers importa-' for  his model; 

one exception to this has been the discussion 01 the chartre on inter-  

stellar grains,  particularly Spitzer ' s  work. 

data have been obtained, and in no case hzve these rneasurements been 

2 Only a few experimental 

. analyzed in terms of the expected potential where all the possible 

charging mechanisms were' evaluated for the specific vehicle that car r ied  

the experiment. 

In addition to Sputnik 111, vehicle potentials have \een rneasured on 

the satellites Explorer VIII, Ariel I and Explorer XVII. Some prelim- 

inary results have been reported from Explorer VIII.40 No data on 

satellite potential havs been reported in the l i terature yet f rom Ariel I 

o r  Explorer XVII. 

The author believes that some of the cnarge acqu.;sition .mechanisms 

have not been treated sufficiently thoroughly. Only Rawer has attempted 

to evaluate the effectla of photoemission by combining photoemission 

yields as a function of wavelength with the solar spectrum.37 Our 

knowledge of the solar spectrum in the extreme ultra-vio1.A has since 

been improved, and the author feels that fairly good quantitative esti-  

mates of the photoemission current can be made for certain materials. 
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The effects of energetic particle fluxes have been invoked as being 

of probable significance, but there have been no quantitative estimates 

babed on know? fluxes euch as those of the Van Allen radiation belts. 

Such an estimate should be made, and secondary emission yields are 

known well enough for certain materials that this effect cculd also be 

included in the calculation. 

Another eifect that has only been noted in passing and then dismissed 

is that of the magnetic field in restricting the direction of motion of 

environmental ions and electrons. It will be shown that this effect can 

be quite significant. 

Finally, there is no literature presently available should one want 

tu  make a quantitative estimate of the equilibrium potential for, say, a 

satellite or other body of certain dimensions and material under specific 

er- rironmental conditions. It is hoped that this investigation will help 

to f i l l  this gap. 
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CHAPTER 111 

COLLECTION OF ELECTRONS AND IONS 

1. General Congiderations. Mechanisms of charge acquisit im can be 

classified as charge collection o r  charge emission. The latter consists 

of processes such as photoemission, thermal emission, field emission 

and emission of alpha or beta particles f rom radioactive materials in 

.the body. There may be 

when there  is secondary 

getic particles. It turns 

a combination of collection and emission as 

emission of electrons upon incidence of ener-  

out that by far the most important processes 

are collection of environmental electrons and ions, which will be treated 

in this chapter, and photoemission and secondary emission, which will 

be discussed in Chapter IV. Other less  important processes will be 

considered in Chapter V. 

At the outset a distinction may he made between the incidence of 

energetic particles and that of lower energy (thermal) particles in that 

only the latter are influenced by the charge on the target body. Hence, 

it is a straightforward calculation to determine the current to a body 

from energetic particles i f  the particle flux and directional distribution 

are known. The effective collection area for a unidirectional flux, for  

example, will simply be the cross-section of the body normal to the 

particle flux. The total effect of the energetic particles on the body's 
. 

charge must of course take into account the amount of induced secondary 

emissions. Thisi and the related problem of "sticking probabilities" 

for  incident ions and electrons is considered in the next chapter. * 

23 



Finally, a distinction should be made between large and small 

target bodies according to their dimensions compared to a Debye 

length, L : 

wh re  i the permittivity, k Boltzmannts con tant, T the pl 

( 3 J )  

ma 

temperature, n the electron or  ion density and e the unit electron 

charge'. The significanceof the Debye length is that any shielding of a 

charged body by space charge in the surrounding plasma occurs in a 

distance on the order of a Debye length. Hence, for example, a spher- 

ical body that is small compared to the Debye length is effectively 

unshielded for many radii away from its center and the electric field 

is essentially coulomb. On the other hand, bodies that a re  large com- 

pared to L have their charge shielded in a small fraction of a radius 

away from the surface. Consequently, it is sometimes possible to 

treat the problem of particle attraction by assuming a neutral body with 

a slightly larger surface area. 

2. Electron Collection. The problem of electron and ion currents to 

a probe in a plasma has been the object ob considerable attention in 

the literature, beginning with the work of Langmuir , Mott-Smith and 

others three decades ago. 41s42 In the upper atmosphere and in space 

the situation is somewhat simpler than in the laboratory in that there 

are no "wall effectstt such as occur in laboratory vacuum systems, 

and the thermal plasma is probably more nearly Maxwellian. This is 

particularly true for electrons since their most probable thermal 

velocity is much larger than typical satellite or  meteor velocities. 
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Velocities range from about 8 km/sec for a satellite near the earth to 

a maximum of 73 km/sec for a meterorite approaching the earth,  

whereas the electron thermal velocity is on the order  of 200 km/sec 

for a temperature of 1500'K. Therefore it is realistic to assume that 

in a satellite centered co-ordinate system the electron velocity dis t r i -  

bution is still Maxwellian. This is not t rue for ions which have thermal 

velocities on the order  of 1 km/sec  - in general lower than typical 

satellite velocities. 

One other simplifia-ation is that at the altitudes which a r e  considered 

here,  collisions between particles are unimportant. The minimum 

perigee altitude for a satellite that is to have a lifetime of at least  a 

few days is about 150 km. The mean free path at 150 k m  is about 50 

meters which is la rger  than most satellite dimensions and very large 

compared to a Debye length a t  that altitude. 

F o r  a repulsive potential the electron current to a body will follow 

the Boltzmann relation, 

n e a A  d e / k T  I = -  e 
2 G  

where a is the most probable thermal velocity defined by 1/2 mu2 = kT, 

and A is the surface a r e a  of the body. This equation is valid for  any 

convex-shaped body of any size in contrast  to the expressions for a t t rac-  

tive potentials which depend strongly on the body's 

are other phenomena, however, which may modify the effective collection 

area A ,  such as the effect of a magnetic field or the presence of space 

charge in  the wake behind a satellite, as will be shown later. 

There 
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For attractive potentials both the size and shape of the body are  

important. Spherical, cylindrical and planar geometries have been 

treated in the literature. It is convenient to restrict the discussionat 

this point to spherical bodies for several reasons: ( a )  It is clearly 

advantageous to approximate a complex-shaped body as a sphere for 

simplicity of treatment. (2) This is a good approximation for small iso- 

lated bodies where the far field will be a coulomb field regardless of 

the details of the body's shape. (3) Most satellites are  roughly spher- 

ical in that the three axes are  approximately equal. Exceptions come 

immediately to mind such as antennas or long booms, but they may be 

treated separately as special cases. 

A positively-charged sphere, then, whose radius is small compared 

to the Debye length will be surrounded by a Loulomb field that is effec- 

tively unshielded. The electron current to a body in such a case is 40 

For a body whose radius is comparable to the Debye length the 

variation of the potential through the sheath is important in determining 

the total collected current. This means that Poisson's equation must 

be solved in the sheath taking into account all the sources of space 

charge in addition to that due to the electrons alone. 1.1 general this is 

an extremely complicated problem requiring numerical procedures, but 

in certain simplified cases an approximate analytical expression may 

be obtained. Mott-Smith and Langmuir derived the following expression 

for the current due to attracted particles in a spherical sheath: 

d 

41 
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where r is the radius of t--e body and a the radius of the slleath, assumed 

to be spherical  and concentric with the body. This equation was derived 

by assuming a well-defined edge to the sheath so that the flux of elec- 

trons at the sheath surface is due to their random thermal motions. 

More recently it has been shown that the sheath boundary is not well- 

'defined but that the electric field may penetrate "beyond" the sheath for 

a considerable distance. 

Smith-Langmuir equation may still be used if  the following expressions 

are used to determine the sheath radius, a: 

43 However, Walker has found that the Mott- 

38 

a = r + t  (395) 

and 

where t is the "thickness" of the sheath around the body. Equation (3.4) 

reduces to equation (3.3) for the case when t >> r ; when t << r then 

Le. , the body may be taken to be neutral with a slightly larger ( 2  t / r) 

surface area.  

3. Positive Ion Collection. The essential  difference between the treat-  

ment of electron collection and ion collection is that in general the 

motion of the body through the plasma cannot be neglected. In the 

27 



special c m e  where the Body is a t  rest with respect to the plasma', the 

preceding equations derived for electrons a r e  applicable to ion collec - 
tior, with appropriate changes in the sign of the potential and in the 

quantities referring to particle characterist ics.  In succeeding equations 

the subscripts t o r  - will be used to denote reference to ions o r  elec- 

trons. These equations for the body at r e s t  will also serve as checks 

on. the general ion current equations since the laiter must reduce to the 

former for zero velocity. 

Mott-Smith and Langrnuir41 discussed the problem of a moving 

ccllector in a plasma but did not give equations for the current. Gringauz 

and Ze1ikmanZ1 showed that the ion current tc a moving sphere would 

decrease in a nearly l inear manner with an increasing retarding poten- 

tial, approaching zero at a potential corresponding to the kinetic energy 

of the ions in the moving system, 4 = m+V2/2e, where V is the velocity 

of the sphere. The current is given approximately by 

'( 3.8) 

a s  long as the thermal motions of the ions can be disregarded. Two 

spherical ion t raps ,  each consisting ob an outer grid and an inner collec- 

tar biased to repel. electrons,  were flown on Sputnik 111. Linear current-  

voltage curves were obtained far repulsive potentials as predicted; 

effects of the ion thermal motion8 were discussed but a general equation 

26 

was not given. 

Such an equation for repulsive potentials has been derived by 
45 M h ~ t e r e g q e r ~ ~  and later by Kanal. 
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2 I, = F n + e V  nr 

* where 

and 
2 2 

e r f x = -  e-” du 
G 

(3.10) 

(3.11) 

Interestingly, the current is independent of sheath size o r  variation of 

potential through the sheath as long as the electric field is radial. 

Gringauz showed that this is because the current is limited by angular 

momentum considerations, and is true a s  long a s  the effective radius 

of the collector, given by 

reff  = r [ 1 -- ,,,I,,* (3.12) 

is less than the sheath radius. This is always true for repulsive poten- 

tials since the bracket in (3.12) is less  than unity. In addition, it will  

be t rue for attractive potentials until the effective radius exceeds the 

sheath radius, with the consequence that (3.8) may also be used for  a 
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limited range. of attractive potentials. Equation (3.9) reduces to (3.8) 

as the ratio a , /V  approaches zero,  and i t  reduces to Equation (3.2) as 

a,/V approaches infinity, 

An analytic expression for the general case of the ion current to a 

moving body in an attractive field has not yet been obtained. The prob- 

lem is extremely complex because it involves a simultaneous solution 

of Poisson's equation and calculation of the ion trajectories.  Both 

Kana145 and Walker38 have made certain simplifying assumptions in 

order to obtain useful solutions. Kana1 used a model for the sheath in 

which ions enter the sheath with zero initial velocity and obtained two 

equations for the ion current by means of which the unknown sheath 

radius was eliminated graphically. Walker integrated the ion trajectories 

numerically, assuming a spherical sheath edge. The shape of the collec- 

tor then depends on the results of the computations, and is not in gen- 

e ra l  spherical. For  the case where the collector is nearly spherical, 

a comparison of Kanalls and Walker's currents shows a disagreement 

by more than an order  of magnitude. 

The assumption of a spherical sheath in front of the moving body is 

probably quite realistic as has been shown by Allpert, Gurevic and 

Pitaevskij. 

Equation (3.9) for the range of potentials where r e f f  < a ,  the sheath 

radius. The same equation with 6 set equal to zero,  and with r re -  

placed by a could be used for the case when r e f f  > a .  Unfortunately, 

the sheath edge is not sharp as Walker and others have pointed out. 

However, the precise position of the edge of the sheath will not matter 

greatly if  the sheath thickness t = a -, r w r .  In this case the current 

will be the same a s  that derived by Sagalyn et  al. 

46 If the sheath edge were sharp it would be possible to use 

35 
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In the case when the body is so small  compared to the Debye length 

that the field m a y  be assumed to be a coulomb field, the current for an 

attractive potential has been derived by Kana1.45 He finds 

The current in this case reduces to that in (3.3) a s  the velocity of the 

body approaches zero,  and it reduces to (3.13) for zero potential. 

Because of the importance of the ion current to a negatively charged 

moving sphere for satellite potential calculations, a program to com- 

pute this current has been developed. Poisson's equation has been 

solved with the assumption of spherical symmetry and with the space 

charge given by 

. 

(3.15) 

Le., the ion density is constant and the electron density is described 

by the Boltzmann factor, the same assumptions used by Jastrow and 

Pearse. 

the ion trajectories,  by using Walker 's classification of trajectories as 

either periastron o r  pericritical. 

in the appendix. Some typical results a r e  given in Figure 4 in the form 

of current versus satellite potential curves. The linear relationship at 

lower voltages with a saturation effect as the effective radius of Equa- 

tion (3.12) exceeds the sheath radius is apparent. The thermal motions 

7 The ion current may then be computed, without integrating 

38 Details of the analysis a r e  given 

< 
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3 f  the ions have been neglected, but the temperature of the plasma is 

taken into account through the Debye length. 

The accompanying t a t i e  summarizes  the different situations that 

have been discussed and shows the appropriate equation to use in each 

case. 

Table I 

Small Int e r media t e Large Size of Body: 

Body at Rest,  V / a  < <  1 

Attractive Field Eq. ( 3 . 3 )  Eq. ( 3 . 4 )  with Eq. ( 3 . 7 )  
( 3 . 5 )  and ( 3 . 6 )  

Repulsive Field Eq. ( 3 . 2 )  Eq. ( 3 . 2 )  Eq. ( 3 . 2 )  

Body - Moving, V/a # 0 

Attractive Fie 1 <I Eq. ( 3 . 1 4 )  Fig. 4 Eq. (3 .13 )  
o r  Fig. 4 

r 

Repulsive Field Eq. ( 3 . 9 )  Eq* ( 3 - 9 )  Eq* (3 .9 )  

4. Effects of the Satellite Wake: A body moving rapidly through the 

atmosphere (in comparison with the ion thermal velocity) will have a 

rarified region behind it in the shape of a cone, as shown in Figure 5,  

with a half-angle given approximately by tan B = a + , / V .  The shape of 

the wake and the ion and electron and potential distribution in the wake 

have been discussed in great detail by Al'pert, Gurevic and Pitaevskij. 46 

The potential distribution in the wake does not appreciaisly affect the 

total ion current  to the body because most of the ion c u r r e n t  is incident 

on the front half. However, this is not the case for the electron current. 

Electrons will diffuse into the wake where because of the absence of 

ions there will be a net negative space charge. Al'pert e t  al. show that 

the potential in the wake will in general be more negative than that of 

the body, reaching an extremum of approximately - 2kT/e I n  ( r /L)  as 
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shown by the dotted line. Consequently, electrons with energies less 

than this will be unable to c ross  this potential ba r r i e r  to reach the r e a r  

half of the body, and in place of Equation (3.2) o n e  should u s e  

(3 .16)  

as long as $ s ,  the satellite potential, is more positive than - 2kT/e In  (r /L) ,  

but less  than zero. If the satellite potential is positive, then Equation 

(3.7) should be used for the front half of the satellite, and 

(3.17) 

for the rear half of the satellite. 
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CHAPTER IV 

PHOTOEMISSION AND SECONDARY EMISSION 

1. Photoemission. 

both photoemission and secondary ernission on the equilibrium potential 

of a body. Only the first step is necessary i f  the body is negative, 

namely the calculation of the total emission current which depends on 

the energy spectrum of the primaries and the secondary electron yield 

as a function of pr imary energy. Since the body is negative all tk: S P C -  

Two steps are involved in estimating the effects of 

ondaries may be assumed to escape, and it is unnecessary to know the 

energy spectrum of the secondary electrons. 

If the body is positive not all of the secondary electrons wil l  escape, 

and it is in this case necessary to know the 2nergy spectrum of the sec- 

ondaries. If the body is small (compared to a Debye length) then all 

electrons emitted with energies greater than that corresponding to the 

potential difference between the body and the environment will escape. 

If the body is large the equipotential surfaces will be approximately 

planar, and the condition for escape is that the directed kinetic energy 

of the electrons normal to the surface must be greater than@, e ,  where 

Qs is the satellite potential. In general, for a sphere we have 

(4;l) 

as the condition for escape, where E is the total energy (kinetic plus 

potential) upon emission, V(r) is the potential outside the sphere,  and 

p is the angular momentuni of the emitted electron. 
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The importance of photoemission in providing a charging mechanism 

for bodies in the upper atmosphere and in interplanetary space has 

emei,ed as a result  of rather recent experimental data in two areas of 

investigation, First has been the demonstration of rather large photo- 

electric yields for metals in the extreme ultra-violet range of wave- 

lengths-ranging up to peak values greater than 10% in some cases  

compared with numbers like to 10'' for yields in the near UV 

( >  2000A). 

in this-same region of the solar spectrum. Figure 6 shows tne solar 

spectrum from 100 to lO,OOO&. 

per cm2 per second per Angstrom interval. The data a t  wavelengths 

below 1775A was obtained by Hinteregger, Hall and S~hrn id tke ;~ '  that 

above 1775A is from Nawrocki and Papa. 

And second has been the discovery of considerable energy 

The ordinate is the number of photons 

0 

0 48 0 
The Lyman-a line at 1216A 

. is particularly important in its contribution to photoemission. 

To demonstrate the effects of both photoemission and sesondary 

emission upon the problem of equilibrium potential, two metals have 

been chosen: tungsten with a work function between'& and 5 electron 

volts and aluminum with a lower work function between 3 and 4 volts. 

The choice of these materials is partly dictated by the fact that data is 

available for both secondary and photoemission from both. Also, alumi- 

num is used extensively in spacecraft construction, and tungsten has 

been used frequently in experiment sensors  so that a comparison of 

laboratory and flight results is possible. 

Photoelectric yields for tungsten in the ultra-violet wavelengths 

have been measured both in the laboratory and on rocket flights in the 

upper atmosphere. The yields as a function of wavelength are shown 
- 

in Figure 6 for k'oth clean and dirty tungsten: t tdir tyl tmeans an untreated 

surface, and "clean" means the surface was heated at a temperature 
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greater than 1000°C in a vacuum of lo1’ t o r r  until yield reproducibility 

was established. Hinteregger’s data was obtained for an untreated su r -  

face; he states that the yields a r e  reproducible even after exposure to 

air .  

The solid line drawn through Hinteregger and Watanabe’s experi-  

mental points to higher wavelengths is a theoretical curve for  the yield 

according to the Fowler-DuBridge theory, with a long wavelength cut-off 

a t  1900A, corresponding to a work function of 6.5 e V  determined by 

Fowler ‘s method. 56’57 The theoqetical curve through Rentschler’s 

points corresponds to a long wavelength cut-off of 2690A, or 4.6eV, in 

good agreement with Warner’s results. The difference in the curves 

is probably due to the state of the metal  surface,  although it is not c lear  

that the Fowler-DuBridge theory can be applied at wavelengths as low 

a s  1700w. 

0 

0 

58 

When the product of the yield and solar flux is integrated over the 

spectrum, a total current  of 2.1 X 10’’ amp/cm2 and 8.1 X lo-’ amp/  

cm2 is obtained, depending on which of the two curves is used at the 

longer wavelengths. These values bracket experimental photoemission 

current densities i dom tungsten of 3.9 X 

Hinteregger” and 5 X l(T9 amp/cm2 obtained on Explorer VIII. 

amp/cm2 obtained by 
40 

0 
The yields for aluminum below 2500A a r e  laboratory measurements . 

37 by Suhrman ana Pietrzyk5‘ fitted to the following law by Rawer: 

Y = 0.077, #A > 8 volts 

-where Q, is the work function of 4 eV and @A is the energy of the cor-  
W 

resp0ndin.g wavelength. These values join nicely with experimental 
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0 
data by de Laszlo55 above 2500A. These large yields, which a r e  a con- 

sequence of aluminum's lower work function, result  in a computed pho- 

toemission current density of 2.5 X 10'' amp/cm2 above the atmosphere- 

two orders  of magnitude greater than that .for tungsten. Such a large 

photocurrent would certainly be important for satellite potentials because 

oi this metal's wide w e  in spacecraft construction. Consequently, an 

experiment was designed to measure the photoemissior current from 

aluminum and was flown on a Nike-Apache rock 

km on Dec. 16, 1964 at White Sands, b:.I'vi. The maximum measured 

current at an altitude of 160 km was 2.3 X 

tion to the top of the atmosphere yields a value of 3 X lo-' amp/cm2,  in 

fair agreement with the result  for tungsten rather than the computed 

value for aluminum. Probably the discrepancy is due to the state of the 

aluminum surface causing an  increased work function-de Laszlo's 

to an altitude of 193 

arnplcmz. An extrapola- 

results were for a carefully prepared and outgassed surface. Ths ex- 

perimental photocurrent will be used in the calculations of satellite 

potential. 

When a satellite o r  other body is positive, the energy distribution 

of the photoelectrons is needed. An experimental current-voltage curve 

f o r  photoelectrons emitted from a positive plane tungsten surface has 

been obtained by Hinteregger, Damon and Hall, 50 and is reproduced in 

Figure 7. For small bodies where the angular momentum distribution 

of the electrons is needed to compute the number that escapes it will be 

assumed that they are emitted with a cosine distribution. 

2. Secondary Emission of Electrons Upnn Electron I.mpact. The phe- 

nomenon of secondary electron emission upon electron impact has been 
I 

studied extensively and ie fairly well understood according to recent 

reviews of the subject.59D60J61 J62'63 The electrons emitted from a 
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target surface include, however, reflected and back-diffused pr imaries  

as well as t rue secondary electrons. The total yield, 6 ,  defined a s  I t / Ip ,  

the ratio of emitted target current to incident pr imary current,  may be 

written as 

. 
Here 8,, is the "true" yield of secondaries due to the pr imaries ,  r is the 

reflection coefficient (1-t is the "sticking factor" for electrons), q the 

back-diffusion coefficient and p an efficiency factor describing the 

increased efficiency with which the back-diffused electrons produce 

their  own secondaries. 

The shape of the t rue  yield curve as a function of primary energy 

below a few keV is in effect a univeysal curve for metals when normal- 

ized to the maximum yield and the pr imary energy at the maximum. 

Figure 8 shows the yields for A1 and W as a function of pr imary energy. 

What is plotted in Figure 8 is the effective yield given by "p( 1 t TP ), 

since measurements of the yield generally have been corrected for the 

back-diffused pr imaries  only, with no distinction being made between 

slow secondary electrons caused by the incident a s  againet the back- 

scattered primaries.  The yields have been extrapolated to zero a t  5 e V  

according to the observations of Shulman and Myakinin, 

that true secondaries occur only above primary energies of 4-7 eV. The 

maximum yield occurs approximately at an energy where the primaries 

are stopped at a depth in the metaL corresponding to the depth from 

64 65 and Harrower 

which secondaries can escape. At higher primary energies the yield 

decreases in accordance with the rate  atwhich the primaries lose energy 

in the escape zone; and it has been shown by KantePhb for energies 

between 1 and 20 keV and'by Schultz and P o r n e r a n t ~ ~ ~  a t  energies up 
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to 1.6 MeV that the energy loss rate is in agret..lent with Ba:he's 

stopping -powe r for mula: 

The reflection coefficient, r , is significant only a t  low primary 

energies below about 10eV. In general, r is of the order  of 0.05 a t  zero 

pr imary  energy and decreases  with increasing energy according trr the 

relation 

- w4 
16 (E t W)3 t W3 

r =  (4.5) 

where W is the sum of the Fermi energy and work function of the metal, 

68 and E the pr imary energy, both measured in Rydberg units (13.54 eV). 

Guth and M ~ l l i n ~ ~  have found r to be 0.05 for tungsten np3.r zero volts. 

The use of Equation (4.5) with a work function of 3.5 eV and a Fe rmi  

energy of 5.6 eV yields a reflection coefficient of 0.04 for A1 at zero 

volts 0 

Figure 9 shows the back-diffusion coeffxient 7 fo r  A1 and W as a 

function of pr imary energy. 61'70 The curves have been extrapolated to 

zero a t  100 eV because the average energy, B/E of back-diffused elec- 

trons is 0.50 for A1 and 0.60 for W in terms of the primary energy, 

whereas 50 eV is usually taken to be the energy distinguishing back- 

diffused electrons from true '  secondaries. 

Figure 10 shows the total yield 6 for Ai and W as a function of 

pr imary energy, obtained by combining the appropriate values for the 

various coefficients in accordance with Equathnn (4*3) .  
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It should be added that above Spmax the yield is dependent upon the 

angle of incidence of the primaries.  At energies ilear the maximum 

yield it is given by 

where C depends on the energy of the primaries.'' At higher energies 

the yield is proportional to sec 6 .63 An effective yield for an isotropic 

flux of primaries may be defined by 

n / 2  . 
S(6) s i n  8 cos 0 d6 t 4.7) 

This reduces to S e f f  = So for  the 6 = 6, sec 0 law. 

All the secondary electrons emitted from a spherical  body in space 

will escape if  the satellite potential is negative. Fo r  positive potentials 

it is necessary to know the energy distribution of the secondaries; how- 

ever,  for  reasonable potentials-Le. less than t50 volts-only the energy 

distribution of the t rue secondaries is needed since the back-diffused 

primaries will still escape. 

Schultz and Pomerantz state that "the energy spectra of secondary 

electrons emitted from metals bombarded by relativistic electrons are 

practically identical with those measured at very much lower pr imary 

energies by K ~ l l a t h . ~ ~ ~ ~  Figure 11 gives this differential energy spec- 

trum. There is abundant evidence that the. angular distribution of the 

secondaries follows a cosine law, hence it is a straightforward pro- 

cedure to compute the number that escape from a body with the use of 

Equation (4.1) e 

3. - Secondary Emissiori of Electrons Upon Ion Impact. The predominant 

positive ions in the upper ionosphere a r e  Ot from 150 k m  to approximately 
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lo3 km and Ht a t  higher altitudes with a more o r  lees thin belt of Het 

between. These a r e  thermal ions, with energies on the order  of a f rac-  

tion of an eV. In addition, there are belts of energetic protons, with 

energies up into the 100 MeV range in the radiation belts. 

Below about one keV the yield for secondary electron emission 

from ion impact is very nearly independent of the ion's kinetic energy. 

This is because the ion is neutralized directly to the ground state as it 

approaches very near to the metal surface. The number of excited 

electrons depends on the available potential energy after neutralization 

which is determined by the ionization potential, +i , of the incident atom 

and the work function of the target metal 4w , as illustrated in Figure 12. 

When a conduction electron is captured by the incident ion, i tmakes 

available a maximum energy of +i - d\v.  At least  +w of this must be 

used to f r ee  another electron from the metal so that the condition for  

secondary emissjon by this mechanism is that +i > 2 +w. It is apparent 

. 

from the figure tha: the yields for various ions incident on several  

metals depend primarily on the difference +. - 2 +w. This relationahip 

is used to estimate the yields in the following table with the exception 

of Het on W which has been measured by Hagstrum. 

Table II 
_ _  

Al ,  +w = 3.5 e V  W, +w = 4.6eV 

Ht, c#+ = 13.5 eV 

Het, #+ = 24.6 eV 

Ot,& = 13.6 eV 

0.086 

0.38 

0.088 

0.041 

0.295 

0.045 

It should be added that the yield is quite dependent on the conditich 

o f  the metal surface. Hagstrum's data is for atomically clean surfaces ,  

whereas the platinum in Pa rke r ' s  measurement may have had some 
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residual impurity even though the measurement was made only 2% 6 6 C -  

ondr after flashing the surface.  The Het+ ion probably l iberates elec- 

trons through the two-atep resonance capture process rather than by 

the Auger process.  74 

Figure 13 shows the yields for  Ht on A1 and W f rom 1 keV up to 

about 10 MeV. The curves have been extrapolated to the value of. Table 

I1 a t  1 keV. They show a broad maximum a t  about 100 keV converging 

to a single curve independent of the target material a t  higher energies. 

The variation of the ion yield as a function of angle of incidence of 

the primaries has been measured by Oliphant8' and by Allen.83 Their 

results show that the yield is proportional to sec 8. 'r'hua the effective 

yield for an isotropic flux of monoenergetic ions incident on a surface 

will be unchanged if  the flux is given in units of no/cm* -sec-steradian. 

Reflection coefficients for Het incident on clean and contaminated 

tungst.en have been measured by Hagstrum to be 0.0017 and 0.00043 

84 respect .qely and were found to be fairly insensitive to the ion energy. 

Although reflection coefficients for H+ and Ot on tungsten o r  aluminum 

are not available, they are probably somewhat larger  but still  less than 

0.02. Hagstrum suggests that these values a r e  representative of the 

reflection of ions whose ionization energy is large compared to twice 

the work function of the solid. It is concluded that ion reflection is ' 

85 

unimportant as far as charging effects on a body in space a r e  concerned. 

The energy distributions of secondary electrons a r e  quite dependent 

on the state of the surface but in general peak near 2 eV with a Max,- 

wellian shape. For  practical reasons Figure I1 will be used when 

needed to compute the escaping electron current for positive satellite 

potentials. 

secondary electrans is a cosine function. 

It will. be assumed that the angular distribution of the 
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CHAPTER V 

0 THER CHARGING 'MECHANISh4S 

1. Discharge Time for a Body in a Plasma. It was stated in Chapter 

III that the most important mechanisms for charging a body a r e  the 

collection of environmental electrons and ions and the secondary proc- 

esses treated in Chapter IV. It is necessary to consider other possible 

mechanisms to see under what conditions this assumption is justified. 

--- 

The concept of the discharge time 7 for a body in a plasma is use-  

'ful in assessing the relative importance of a pr*oposed charging inecha- 

nism in comparison with ion and electron collection. Suppose that a 

body at an equilibrium potential determined by a b 'bance between ion 

and electron accretion from the environmental plasma suddenly acquires 

an additional amount of charge by some other mechanism which acts 

only momentarily. The body will return to its previous potential in a 

time o : ~  the order  of 7 seconds. If the frequency of occurrence of this 

other mechanism is small compared with the quantity r y l ,  then i ts  

effect on the average equilibrium potential may be ignored. 

As an example, consider a small  body at a negative potential where 

the ion and electron currents  a r e  given by Equations (3.2) and (3.3) 

respectively. The change in the charging current to the body due to a -- 
sudden small change in potential is on the order  of 

n e a + A  

2/57 
AI 2 

e - w kT 

5 5  



Hence, we may write 

where Q is the excess charge over that at equilibrium and C is thebody’s 

capacitance. Thus we find that the discharge time T for a small sphere 

of radius r is given by 

4 7  12. 

(5.3) - 
_ _ v  

2/57 CkT - € 0  kTm+ 
T =  - 

n e2 a+ A n e* r 7B 

where T;’ 

characteristic time describing how long it takes an ion to travel a dis- 

is the ion plasma frequency, 1/2n h- , and rB is a 

tance comparable to the dimensions -f the body. Representative values 

for T for a 10 micron radius body are  2 X sec in the ionosphere 

and 2 X sec in interplanetary space. Discharge times for larger 

bodies will  be proportionately smaller although sheath effects will then 

complicate the definition of T .  

2. Cosmic Rays. Spitaer” has shown that cosmic rays have a negli- 

gible influence on the rate of charging of small dust grains in inter- 

stellar space. The flux of primary cosmic rays outside the earth‘s 

atmosphere is about 1 cm‘* sec-l , whereas the f l u  of ions from th-z 

plasma in interplanetary space is at least 105 cm-2 sec-’ The ioni- 

zation produced in a particle along the path of the cosmic ray  will be 

on the order of or less than 106 electrons/cm, and only thase produced 

within a depth of l W 7  ern from the surface will be able to escape. Hence, 

a cosmic ray particle is no more effective than a single low energy 

environmental electron in charging a small particle. 
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In large bodies the effects of showers in increasing the charging 

efficiency must be considered. If the body dimensions are large corn- 

pared to the interaction length for s t a r  production, then both the pri-  

mary  and the products of the s t a r s  will come to rest in the body. One 

would expect a maximum in the charging efficiency at a body dimension 

on the order  of a few interaction lengths. There is an analogy between 

this picture and the situation in the ear th 's  atmasphere where the f l u x  

of cosmic ray  particles reaches a maximum at a depth of about 60 gm/ 

Gm2, or one interaction length. The corresponding distance is OR the 

order of 0.1 to 1 meter  for appropriate densities. However, the flux 

in the atmosphere at the Pfotzer maximum is only double that outside 

the atmosphere; hence it may safely be concluded that the increase in 

charging efficiency is less than an order  of magnitude, and the charg- 

ing effect of cosmic rays may be disregarded. 

3. Radioactivity, Radioactive mater ia l  in a body in space constitutes 

a charging mechanism both through the escape of emitted charged pri-  

mar ies  f rom the radioactive nuclei and also through the escape of sec-  

ondary electrons excited by the primary in its passage to the surface. 

To compete with the minimum expected ion flux in interplanetary 

space of lo5 cm-2 sec-l  used in the preceding section, a surface ac- 

tivity of 3p -cu r i e s / cm2  is required i f  only the pr imaries  a r e  taken 

into account. The efficiency with which secondaries can be produced ' 

will be of the same order  of magnitude as the yieids for secondary 

electrons discussed in Chapter IV. Thus p radiation has a low effi- 

ciency near 1% until it has slowed down to less  than one KV, where tho 

efficiency peaks at values somewhat greater  than unity. Proton and 

a-emission efficiencies will have a maximum value near ten a t  ener- 

gies near 100 KV. 
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This line of reasoning is supported by looking at the specific ioni- 

zation rates  for these radiations. Peak ionization rates are less than 

10 

near 100 KY, s imilar  to the secondary yields in Figure 13. These spe- 

8 ion-pairs/crn ior  both protons and a-particles in tungsten and occur 

cific ionization rates w e r e  computed from stopping cross-sections per  

atom, using 30 eV as the energy required to form an ion pair.86 The 

peak in production for electrons occurs at a few hundred eV. ionization 

cross-sections for electrons in gases show a maximum less than about 

IO-'§ cm'2 at these energies,  which, i f  applied to a solid material such 

as tungsten, yield a specific ionization somewhat under lo8 ion-pairs/ 

cm60. Since the secondary electrons will have energies below about 

20 eV,  only those excited within about 20A of th-2 surface will escape. 

This yields an upper limit of' 20 for the efficiency of a pr imary in pro- 

0 

ducing secondaries which can escape from the body. 

The amount of radioactive material in bodies in space has  been 

studied extensively from the viewpoint of determining the ages of mete- 

orites. Typical values for the induced activity as a result  of cosmic 

ray bombardment a r e  on the order  of 3 few hundred disintegrations 

per minute (dpm) per kg of material, or ~ u r i e s / k g . ~ ~  Similar 
88 activities have been measured on sections of recovered satellites. 

It is obvious that the charging effects of such low quantities of radio- 

active material  a r e  entirely negligible. 

Satellites sometimes ca r ry  quantities of radioactive material  in 

conjunction with certain types of experiments, o r  as a power source; 

Such sources a r e  usually well shielded but should still be considered 

as potential charging mechanisms. Clearly, each such source must be 

evaluated individually, 

58 



4. Thermionic Emission. Shen and C h ~ p r a ~ ~  have discussed the effect 

upon the equilibrium potential of thermionic emission of electrons from 

bodies in space. They found that the temperature of a metallic body 

with a work function of 3.8 eVrnust exceed 700'K before it could have 

any significant effect. They assumed that the emission current was  

balanced by electron collection from the surrounding plasma charac - 
terized by a density of 103/cm3 and a temperature of about 1000'K. 

If a work function of 3.5 eV is assumed, a surface temperature of 

about 800°K is required for a n  electron emission of IOs cm'2 sec" to 

compete with the minimum expected ion flux. Such a high temperature 

is likely only in special situations, such as when a meteor or  space 

vehicle enters the earth's atmosphere below 100 km at high speeds, o r  

when a body approaches sufficiently close to the sun. A body with a 

typical albedo for meteors of about 0.4, whose temperature is deter- 

mined by a balance between solar flux and black-body radiation, will 

have a temperature of 800'K only when it approaches a distance of 0.19 

astronomical units-half the distance of Mercury's orbit from the sun. 

The effects of thermionic emission will not be pursued further in this 

investigation. 

5. Field Emission. Spitzer and Sa*wcdofril9 have pointed out that for 

small dust grains field emission of c:lect.rons will limit the potential 

when it Is negative. The onset of field emission occurs at surface 

field values between IO6 and l o 7  volts/cm, the lower field correspond- 

ing to an emission flux of lo5  cm'2 8ec-I for a work function of 3.5 eV. 

Since tile surface field of a Emall spherical particle is + / r  the poten- 

I 11 i s  limited to negative values below approximately 10 6r. Thus, field 

emission is important only for dust grains of radius - lo-' cm (0.1 

micron) and less. 
rn  



6. Collisions with Dust Grains. One square cm of satellite surface will 

be hit by a dust grain with a radius la rger  than0.3 microns approximately 

ouce every 50 seconds in the vicinity of the earth.89 This impact fre- 

quency decreases rapidly for la rger  grains; it probably also decreases  

by at  least three orders  of magnitude a s  one p a c e e d s  from the vicinity 

of the earth into interplanetary space. The value of 0.3 micron was 

chosen because smaller particles cannot remain at the ear th 's  distance 

from the sun on account of the solar  radiation pressure.  

In spite of the fact that w e  impact will produce many free electrons, 

the time between impacts is so large compared with the discharge time 

due to the plasma that the charging effects of such encounters may be 

completely disregarded. 

7. The Effect of Radio Frequency Fields. Early speculations 

the r f  fields around telemetry and other antennas on satellites might 

influence the satellite potential by a rectifying effect on currents  from 

11,90 that 

the plasma have been put on a quantitative basis by a group of Japanese 

investigators working on radio frequency probes. 9 ' ~ 9 ~  (See also recent 

articles by Crawford and Harp 93'94 on the theory of the rf resonance 

probe.) 

At rf frequencies below the plasma frequency the electron current 

density to a negative body is given by 

(5.4; 

Here j o  is the current density to the probe with no rf field, I,, is the 

modified Bessel function of the first kind, v the amplitude of the rf volt- 
e 

age and V, the equivalent electron temperature. The current  density is 

independent of frequency until close to the plasma frequency where it rises 

to a maximum and then falls to the value j o  at  higher frequencies. 
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The Bessel function in (5.4) was obtained by integrating Equation 

(3.2) over one period of the rf voltage. Thus one would expect (5.4) to 

hold only at frequencies low enough that the electron's transit  t ime from 

outside the sheath to the probe is small  compared to the rf period. At 

positive potentials the effect would also be computed for low frequencies 

by averaging the appropriate equation from Table 1 over a period. 

The maximum in the current occurs close to but generally a t  a 

lower frequency than the plasma frequency. The resonant frequency 

depends primarily on the geometry of t h t  ,,robe. The height of the cur-  

rent maximum depends both upon the geometry and upon the effects of 

damping by the plasma. Coliisional damping predominates i f  the neutral 

density is high enough; otherwise there is an "rf phase-mixing technique 

akin to Landau damping."94 The former mechanism has been studied 

to some extent, but very little is known about the latter,  which would be 

the prevailing mechanism in the upper atmosphere. 

discussed further when the Explorer VI11 data is presented. 

The effect wil l  be 
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CHAPTER VI 

MAGNETIC FIELD EFFECTS 

8 1. The Induced 7 x 3  Potential Gradient. Beard and Johnaon pointed 

out that a satellite moving across  the magnetic field of the earth would 

experience an induced potential gradient of as much as 0.2 volts/meter.  

This effect was observed on Explorer VI11 through its effect on the elec- 

tron current to a plasma probe.40 The phenomenon may be described 

as follows: a conducting body moving across  the magnetic field is 

polarized so that in a coordinate system moving with the body the elec- 

tric field due to the induced polarization charge exactly cancels the 

induction field in the interior of the body. The polarization charge, in 

turn, is the source of a real field external to and carr ied along with the 

body which depends on the geometry of the body (and the environmental 

plasma), but whose effect on the plasma (i.e. on particle collection o r  

on the sheath) may be described by saying that the potential of the sur -  

face of the body varies linearly with distance in the x 5 direction. 

The best way to see this is to make a Lorentz transformation of 

the magnetic field to the moving satellite reference frame. A uniform 

electric field is obtained given by x B' in MKS units. The effect of 

this uniform electric field on a conducting body can then be calculated 

by the usual methods of electrostatics. For example, a sphere in a 

uniform field gives rise to a potential distribution described by a dipole 

term plus the uniform ".eld term. The effective external electric field 

is then obtained by subtracting the uniform field since the effect of the 
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magnetic field on the charged particles in the plasma can beet be de- 

scribed by using the Lorentz force,  Hence, the effective potential on 

the conducting surface is a linearly increasing function in the 3 x 6 

direction. 

This effect is important primarily for the collection of electrons 

which depends expone.ntially on the satellite potential i f  it is negative. 

Beard and Johnson computed the effect on electron collection to a rec-  

8 tangular parallelepiped satellite. 

sphere moving in a magnetic field may be computed a s  follows: in a 

spherical coordinate system centered in the sphere the surface potential 

is given by 

The electron current to a negative 

where the z-axis is taken in  the v x B' direction. An element of a r ea  

given by 2nR2 s i n  6 d B  is a t  the potential given by (6.1), so that the cur-  

rent to the satellite is, f rom Equation (3 .2) ,  

W e  obtain 

( 6 . 3 ) .  

where 1, is the electron current that would be collected by the sphere 

i f  it were at the uniform potential cpo. 
c 

The practical consequence of this induction effect is that for large 

spacecraft one end of the structure is "pinnedt' close to zero volts o r  

slightly positive, with the other end becoming relatively more negative. 

64 



This is because the positive current  to the body is limited, whereas the 

negative electron current increases more' strongly. Thus, i n  Equation 

(6 .3) ,  a s  the x ?i t e rm increases,  the potential +o contained in I, must 

become more negative to maintain 1- relatively'constant and equal to 

2. Effect of a Magnetic Field on the Direct Collection of Particles.  In 

addition to the induction effect caused by the motion of a body, a mag- 

netic field can also affect the collection of charged particles by restr ic t -  

- 

ing, their direction of incidence. Consider, for  example, a cylinder with 

its axis parallel  to the magnetic field. k3ectrons approach the cylinder 

by spiralling along the magnetic field with a certain radius of gyration, 

p. For an electroil to be collected at a given point on the side of the 

cylinder at least  two conditions must be met: f i rs t ,  the distance of the 

- 

magnetic field line about which the electron moves from the cylinder 

axis must be less than R t p ,  but greater than the absolute value IR - P I ,  
where R is the radius of the cylinder; and second, the distance of the 

point f rom the end of the cylinder must be less  than the "wavelength" 

of the spiral. It is apparent that the current to the side - of such a cyl- 

inder must decrease as the distance from either end increases. 

This effect is important whenever p is small  compared to the size 

of a body, and consequently is important for electron collection by 

rockets and satellites, since p is on the order  of cm in the ionosphere. 

Because of the fact that this effect on electron collection in the upper 

atmosphere has not been treated quantitatively in the literature, a cal-  

culation is made here for both cylindrical and spherical bodies with the 

assumption of zero potential difference between the body and the plasma. 

The results for a cylinder will be applicable to probes mounted on the 

side of a rocket; indeed, there is evidence for anomalouely low electron 
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currents  to such probes on rockets flown at Fort  Churchill, Canda,  

where the rocket axis was within a few degrees of the magnctt3.c field 

direction. 

A Maxwell-Boltzmann velocity distribution for electrons may be 

written a s  follows, using cylindrical coordinates in veaocity space: 

2 2  m- - - ( v  t V T )  f (vz ,  vT) = n, ( ~ = - r ' ~  e 2kT z 
277 kT (6.4) 

where vz is the component of velocity along the field line, and vT is the 

transverse component. The radius of gyration is given by 

p = m, vT/Be (6.5) 

and the wavelength by 

At the plane z = 0 defining the front face of the cylinder, the current 

density of incident electrons is given by 

where 2n vTdvTdvs is the volume element in velocity space. The geom- 

etry of the problem is described in Figure 14, where r is the distance' 

of the guiding center field-line from the cylinder axis, and 4 is the 

phase angle of the electron in its circular motion defined with respect 

to the 4 = 0 line as shown in the figure. All  electrons with r c R - p ,  ~ 

where p < B, will be collected on the front face independent of its phase 

angle 4 a t  the plane 2 = 0. To be collected on the side of the cylinder 

the condition R p < r c R +g must be met, and the phase angle must be 
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between 0 and ~5~ as it reachee the plane z = 0. The particle impacts 

the cylinder when C$ reaches C$= at a distance z along the cylinder that 

is proportional to the phase h .@e ($= - 4 )  and the velocity vz: 

vz wc -4) A 
= - (4= - 4) z =  

angular velocity 271 

where 

3bviously, i f  this value of z exceeds the cylinder length L, the particle 

will miss the cylinder completely. It follows that if the above condi- 

tions are satisfied for a given r, p and A ,  that all the particles with an 

initial phase angle 4 and with wavelengths between X and A +dA will be 

collected in the surface element 2nRd2, where 

The current per unit length to the cylindez will then be given by --- 
J 2nr dr “=I dz dz (g) 

(6.10) 
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where a- has been clefirked previoilsiy In Chapter 111, and where p* = 

m,u_/Be. The al-ea :I< irtt+grat.ion for the  7:ariables F )  and r is the shaded 

area in Figure 14, hourmcb :.y :!:2 l ines  . - R t I ,  j' - -  R - r and P = r - R. 
This may be integrated w i t h  respect to : to obtain 

(6.12) 

So far we have been considering electrons incident at one end of the 

cylinder only. Electrons arriving from the opposite end will constitute 

a current  of the same form but with z replaced by (L - 2  ). Hence the 

total current  will. be given by 

The first term may be integrated with the result  

(6.14) 

which is jus t  the current per  unit length for the case of no magnetic 

field. The other terms have been integrated numerically for a choice 

of values for R and p* characterist ic of a Nike-Apache rocket in the 

ionosphere. The resulting currents normalized to the current of (6.14) 

are shown in Figure 15. 

It is apparent f rom the figure how for  a typical Nike-Apache pay- 

load length of 60" the current per unit length at the mid-point of the L 

rocket has decreased 1 y two orders  of magnitude. In fact, the curve 

for L = 60" is essentially identical to the current pcr unit length due to 

electrons arriving from one direction only. This effect probobly explains 
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why measured <:lectrcn currents  to probes on the nose-tips of Nike- 

Apache rockets have been observed to be low by a factor of two when 

compared with normal  diffusion theory. 95 

A similar procedure has been follpwed to compute the electron 

current to a sphere as a function of the ratio of the sphere 's  radius to 

the most probable radius of gyration, p*. The geometry is illustrated 

in Figure 16, where the magnetic field is parallel  to the z-axis. The 

equations for the spi.ca1 described by the el.ectron a r e  

and t (6.15) 

where (xl, y,) are the co-ordinates of the guiding center. When this is 

combined with the equation for  the sphere,  r = R, the following equation 

is obtained for the value of z where the particle is incident on the sphere:  

(6.16) 

The left-hand and right-hand sides of this equation are also shown in 

Figure 16 as a function of z . It is apparent that all particles with 

( rl  - p)?  > Rz cannot be collected, while all particles with ( r l  t p )  < R 

will be collected. Those with ( r ,  - 
be collected depending upon the particle 's  phase angle 4 and its wave- 

length. The crit ical  phase angle, 

necessary 60 that tho particle merely grazes the sphere. It is found 

< R2 e ( r1  t p ) 2  may or may not 

is defined as the phase angle 
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by combining Equation (6.16) with the equation obtained by differentiat- 

ing (6.16) with respect to 2. W e  find 

where 

(6.17) 

Al l  particles with -4c < 4 

The case when $J~ = 0 

< t 4q will be collected. 

occurs when the particle trajectory grazes 

the sphere twice, once when approaching and once when leaving. This 

defines a minimum wavelength, Am = 277m- /Be ( v ~ ) ~  , €or a Given r l  and 

P, such that all particles with shorter wavelengths will be collected 

regardless of their phase angle. W e  obtain for the total current:  

where u = vZ /u-, and where 

The areaA is the same a s  shown in Figure 14. All the integrations 

may be carr ied out in a closed form except for the term containing +c 

~ 
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The total current to the rpherg in terms.of the current with no magnetic 

field ia  

where F(R/P) ie the result of a computer integration of the term in 

(6.19) containing r&. Thie current ie plotted in Figure 17, verifying the 

effect of a magnetic field in reducing the electron current to a large 

sphere by a factor of two. 

74 



os 00 h 9 
0 0 0 0 

OI/I 'lN3YIm a3zllvwYoN 

e4 
0 
c 

0 
c 

v 

c 
I 
0 
c. 

N 
I 
0 m -  

0 

- 
a 

t w 
A 
w 
w 

2 
i;: 
Q) 

Q) 
k 
a, c a m 
(d 

0 
c, 
c, 

k 
k 
3 u 

r 
r( 

75 



B L A N K  P A G E  



CHAPTER VI1 

EQUILIBRIUM POTENTIALS FOR VARIOUS 
ENVIRONMENTS 

1. General Equations and Computational Procedure.  The general pro- 

cedure for finding the equilibrium potential of a body is to se t  the total 

current to the body equal to zero. The corresponding potential is  the 

eqaiiibrium potential, in accordance with the discussion in Chapter I. 

In this section some general results a r e  presented in  the form of equa- 

tions and c;raphs showing expected equilibrium potentials a s  a function 

of various parameters  such a s  temperature,  body size, body velocity, 

etc. In the following sections equilibrium p:i;.cntials will be compu . d  

for representative conditions in the uppcr Lh-nosphere of the earth and 

in interplanetary space. 

For a small  spherical  body a t  r e s t  we use ( see  Table 1) Equation 

(3.3) for ions and Equation (3.2) for electrons and find 

as long as the body is negative. Here Q is the normalized currelit 

density 

G J  o =  2n e a, 
( 7 . 7 '  

where J is the sum of both photoemission current density and c:rrrent 

densities of energetic"partic1e fluxes and their secondaries. This is a 

transcendental equation which must be solved numerically. Solution 

for  Q = 0 a r e  shown in Figure 18 as a function of the temperature raticl 
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i- 4- T, /T+ for  ion e!ivironments of o', H e  a n d  H As one would expect, a 

body is more  negative when the atmospheric ion is heavier because of 

the lower thermal velocity. Although the normalized potential becomes 

less  negative for an increasing temperature ratio. the potential itself 

becomes more  negative. In other words, i f  T, were constant but, T, 

were increased, the potential of the body would become more negaiivc 

even through the quantity $e/kT, becomes smaller  in magnitude. There 

are both theoretical and experimental reasons for believing that tb:errnal 

equilibrium is not always present in  the atmosphere. 96 

Equilibrium potentials as a function of Q are shown in Figure 19 
t t for 0 and H environments and for three temperature ratios. At large 

values of Q the curves become quite flat. This i s  because the ion c u r -  

rent is becoming unimportant in comparison with the (positive) photo- 

and/or  energetic particle currents.  When the ion current is negligible 

we find 

as long as 

When Q exceeds the right-hand side of this inequality the body becomes 

positive. When this is true Q is a t  least  w- = 42.87. Hence the 

positive ion current  may be disregarded, and we find 
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where Qp, Q, , Q- a r e  the normalized photocraission and energetic par-  

ticle current densities. Y, is the effecti\re seiofidary- electron yield ior 

the energetic particles;  and fl($)and f , ( G )  a re  curves of current versus 

voltage obtained for a small  body from Figures 7 and 11 respectively, 

and normalized to unity a t  4 = 0. 

Although a "small  body a t  rest" may not a t  f irst  glance seem to 

apply to many rea l  situations, this is not the case.. Xicrometeorites or 

other dust particles have been shown to be important in and below the 

D-region of the ionosphere in providing a sink for atmospheric ions and 

electrons. Their potential whicfi must be known to estimate the magni- 

tude of this effect may be calculated from the preceeding equations and 

graphs. The equilibrium potential of small  particles in  interplanetary 

space where the positive currents to particles a r e  due to photoemission 

and solar wind protons may also be computed from Equations (7.3) o r  

(7 .5) .  

For  larger  bodies sheath effects must be taken into account. As 

long as Q = 0 the equilibrium potential of the body will be negative. 

The appropriate equations are (3.2), (3.4), (3.5) and (3.6). Solutions for 

the equilibrium potential have been obtained numerically and a r e  shown 

in Figure 20 as a function of the ratio of the body radius to the Debye 

length. Magnetic effects have not been included. When the ratio r/L 

is large, Equation (3.7) may be used with the result: 

The magnetic effect of Chapter VI, Section 2 ,  may easily be included in 

this equation by subtracting from the r ight  hand side the quantityln(I/I,,) 

of Figure 17. 
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Figure 21 shows solutions for the equilibrium potential of a small 

moving body as a function of its Mach nLimber, M, for the ca.se when 

Q = 0. The appropriate equations a r e  (3.14) for ions and 3.2 for elec- 

trons as long as the potential is negative. We find 

As the velocity initially increases the ion current  first decreases ,  as 

ions cannot catch up to the satellite f rom behind, and then increases as 

more and more are swept up i.~ front. As a result ,  the equilibrium 

potential iirst becomes more  negative, reaches a maximum, and there- 

after becomes more positive. 

The effects of photoemission on a small moving body are shown in 

Figure 22. Note the change from a linear to a logarithmic scale for 

the abscissa at Q = 10. Equation (7.7) was used for negative potentials 

and the following equation (from (3.9) and (3.3)) for positive potentials 

when Q is large: 

where G(M, 4) is the curly bracket of Equation (3.9). The equation has 

been written in this form because it has been found that the easiest 

computational procedure is to compute Q for a series of choices for 4 .  

When c$ is positive the Mach number becomes relatively unimpor- 

tant. This again is because the ion current is small  compared with the 

large positive photocurrent. The equilibrium potentials are almost 

independent of the nature of the ion. This can be verified by noting that 
t the curves for 0 

those for H+, which is the ratio of t h e  corresponding thermal velocities 
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and hence also the ratio of the corresponding'definitions for Q. Since 

the electron current to a small  body is unaffected by the body's motion, 

the equation for large 4 reduces to (7.5). The reason that the plasma 

temperature must appear explicitly is that the function f,(+) giving the 

relative number of photoelectrons that escape is independent of T. 

Turning now to the case of a large body in motbn ,  we must take 

into account the effect of the wake on the electron current a s  discussed 

in  Section 3.4. Figure 2 3  shows computed equilibrium potentials as a 

function of Mach number for two bodies whose radii a r e  5 and 10 Debye 

iengths. In this  figure Q is zero and no magnetic effects have been in- 

cluded. The ion current was computed according to the method described 

in the appendix. In addition, results a r e  shown when the ion current was 

computed from the sheath approximation of Equation (A13) together 

with Equation (3.13). It is apparent that the two methods agree very 

well for Mach numbers greater than about three. 

Figure 24 shows the effect of photoemission in driving a large body 

to positive potentials. The radius has been taken to be 33.3 Debye lengths. 

That the equilibrium potential does not depend strongly on size once r/L 

exceeds 10 can be seen by comparing the potentials at  Q = 0 with the 

corresponding solutions in Figure 23. The effect of the induced poten- 

tia! gradient due to the magnetic field in driving the body more negative 

is shown by the dashed curve for a Mach number of unity and an oxygen 

ion atmosphere. In Figure 24 the sheath approximation for the ion cur-  

rent of Equation (A1 3) in the appendix was used with Equation (3.1 3) for 

negative potentials and Eq. (3.9) for positive potentials. .. 

2. Expected Equilibrium Potentials in the Ionosphere for Large and 

- Small Bodies. - To illustrate the range of equilibrium potentials expected 

in the earth 's  ionosphere, two mcdei atmospheres have been chosen 
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corresponding to low and medium temperatures,  The data in Chapter 

VIII will describe equilibrium potentials for high temperatures. Figure 

25 shows the ion densities and temperatures chosen fu r  the cold model, 

and Figure 26 the corresponding quantities for the warm model. The 

procedure in constructing each model was a s  follows: A temperature 

for  the isothermal region above 500 km was first chosen. The peak 

electron density was then chosen to be 2 X lo6 ~ m ' ~  a t  280 km for the 

warm model and 2 X l o 5  at 350 km for the cold model, in accordance 

with typical diurnal maximum and minimum densities. 96 Chandra's ex- 

pressions for electron density in the upper F region were then used to 

compute densities f rom 200 km to 425 km. Below 500 km T, was 97 

set equal to T, for the cold model and normalized to the neutral gas 

temperature variation as published by the U S  Committee on Extension 

to the Standard Atmosphere. For the hot model the ion temperature 98 

was set equal to the standard atmosphere neutral gas temperature, but 

the electron temperature measured on NASA rocket 6.04 was used. This 

rocket experiment flown on March 26, 1961, found an electron temp- 

erature  at 360 km of 1600OK. The ion densities above 400 km geo- 

potential altitude (425 k m  t rue altitude) were computed from Bauer I s  

ternary ionosphere model, which uses that altitude as a reference 

level, 100,101 

Bauerls model was used up to 6000 km altitude. Temperatures in 

the cold model were kept a t  700' all the way out to 20,OOU km altitude 

(4.14 earth radii), whereas for the warm model the temperature was 

increased in accordance with recent measurements by Serbu. lo' Serbuls 

observation that the electron density beyond 2.2 earth radii may be ap- 

proximated by a powcar law with an exponent of -3.4 was used to com- 

pute the total electron. density out to 20,000 km. 
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The equilibrium potential of both a small and a large body have 

been computed for both model atmospheres under conditions of darkness 

and sunlight. The body was a s s u r e d  to have a velocity equal to that 

necessary for a circular orbit  at the corresponding altitude. The mag- 

netic induction effect was included for the large body by assuming that 

it was moving perpendicularly to the earth 's  magnetic field. This would 

be true for a body moving in the earth 's  geomagnetic equatorial plane. 

Finally, the secondary emission yields for the three kinds of ions en- 

countered as well as for electrofis (incident on Al)  were included in the 

calculation. 

The equations used in the calculations will not be given here. They 

a r e  sinilar to those given in the preceding section but more complicated 

in that the ion current in general involves a summation over the three 

ion constituents. The photoemission current density was taken to be 

4 X loc9 amp/cm2,  and the radius of the la, ge body to be 1.0 meters. 

The results of the calculations are shown in Figures 27 and 28. 

Several general observations may be made. First, the potentials for 

the large and the small bodies are very similar, lying in the range from 

-0.1 to -0.6 volts, until the effect of photoemission begins to predominate. 

Photoemission begins to have a significant effect at about 1000 km al- 

titude, but positive potentials a r e  not obtained until about 5000 k m  in a. 

cold atmosphere and 10,000 k m  o r  above in  a warm atmosphere. In 

darkness the satellite potential is mainly a function of the temperature 

done, a s  can be seen from the constancy of each solid curve in the 

isothermal region of the atmosphere. At higher altitudes - above 10,000 
L 

km - there i L  a much greater range in the possible values for the 

potential. 
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The effect on the equilibrium potential of energetic particles trapped 

in the earth 's  magnetic field has not been investigated in detail, except 

for some estimates made recently by Kurt and Moroz. l o3  Figure 29 

exhibits typical energetic particle fluxes in the ear th 's  magnetic equa- 

torial  plane. Not shown is the inner zone proton belt between approxi- 

mately 1000 and 10,000 km consisting of 10 Mev and higher energy par- 

The maximum omnidirectional flux of these protons is about 
104 

tides. 

5 x io4 cm-2 S; -l  at about 4000 km, which is much too small a flux to 

be a significant charging current. Much more significant is the belt of 

low energy (5KeV) protons found by Freemanlo5 and also described by 

Hilton et al. lo6 Extremely large fluxes were observed; but the spacial 

extent and altitude of maximum flux of these protons is not known. These 

protons would have a significant effect on the equilibrium potential, as 

is shown by the curves marked with a n  "E" between 1100 and 1550 km. 

The effectiveness of these protons is enhanced by the production.of 

secondary electrons with a yield of 2.8, corresponding to an aluminum 

surface. 

In the same region of space a s  the high energy proton belt there 

are known to be large fluxes of energetic electrons. There a r e  appar- 

ently large fluctuations in these fluxes with time, but the variation and 

extent of these fluxes are not well known. A typical observation of elec- 

trons with energies above 20 KeV is shown. lo7 At these energies the 

total secondary emission coefficient is 0.3 o r  less on aluminum. The 

effect of these fluxes on the equilibrium potentials shown in Figures 2 7  

and 28 was computed and found to be either insignificant o r  just  barely 

distinguishable. 

., 
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More significant a r e  the outer zone protons with energies above 

100 KeV described by Davis and Williamson. lo8 They found an expon- 

entia1 energy spectrum with a scale factor of 400 KeV a t  the altitudes 

shown. An integration of the secondary electron yields of Figure 13 

over this energy spectrum results in an effective yield of 2.25 for these 

protons incident on aluminum, and 1.34 for incidence on tungsten. The 

effect of these protons on the equilibrium potential is shown above 

10,000 k m  for the case of an aluminum surface in darkness. A body 

with a tungsten surface would have a potential between the two curves. 

In the sunlight the effective llQ+ll due to these protons is at most less 

than 4% of the value of Q due to photoemission. 

It is emphasized that these choices of fluxes of energetic particles 

are illustrative only. In reality the fluxes vary widely not only in time 

but also as one moves away from the magnetic equator. This discussion 

is primarily for the purpose of demonstrating that the energetic particles 

trapped in the earth 's  magnetic field can have a significant effect on the 

equilibrium potential of a body. 

3 .  Expected Equilibrium Potentials in the Earth 's  Magnetosphere and 

in Interplanetary Space. The earth 's  magnetosphere may be defined as 

that region of space where the motion of charged particles is controlled 

by the earth 's  magnetic field. It is characterized by a relatively hot 

ionized gas with a temperature f rom a few thousand to 50,000°K, and by 

large fluxes of energetic electrons. 109'110 There is a well defined 

outer boundary to the magnetosphere which is quite analogous to the 

hydrodynamic description of the supersonic flow at a fluid around a bhmt 

object. In this  case the blunt object is the magnetic field and the fluid 

i b  the expanding ion and electron gas coming from the solar corona, 
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aptly called the solar wind, At  the magnetosphere boundary (magneto- 

pau. e )  there is a sharp drop in  the magnetic 'field, a narrow transition 

region, and then a shock-front caused by the solar wind impact. Inter- 

planetary space is characterized by the solar wind stteaming radially 

outwards f rom the sun a t  velocities f rom 300 to lo3 km/sec,  and with 

densities of 5 to 20 ions/cm . 3 111,112 

The calculation of eqdlibriurr.. potentials in both these regions is 

cmsiderably simplified by the fact  that the effect of low energy ions may 

be usually disregarded. Within the magnetosphere the flux of energetic 

( > 30eV) electrons is apparent'ly usually larger  than the total positive 

ion flux - a t  least a t  distances beyond abw,; s ix  earth radii from the 

earth 's  center. Consequently, the equilibrium pui-.ent:a:t of a body in the 

magnetosphere will be determined by a balance between the effects of 

photoemission and incident plectrons only. 

9 

Another simplification is the Pact that the low particle densities 

and high temperatures result  in a large value for the Debye length - 
typically 2 meters o r  larger.  Therefore,  it is not a bad approximation 

to use the small  body equations for bodies as large,  even, as typical 

spacecraft. Finally, because of both the negligible effect of low energy 

ions and the relatively low velocities of bodies in these regions with 

respect to the electron thermal velocity, the body may be regarded to 

be at rest. 

The equilibrium potential in the magxietosphere is very sensitive 

to the ratic: of energetic electron flux to photoemission flux. For a 

negative body we find 
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as long as 

When the energetic electron flux dominates photoemission the potential 

may rise to a very high negative value - to a potential characterist ic of 

the energetic electrons. In this case the low energy positive ions should 

be included in the calculation. However, this is not a very likely possi- 

bility for bodies with metallic surfaces. Maximum observed energetic 

electron fluxes are on the order  of lOg/cmz-sec, yielding a current of 

* 10-" amp/cm2,  which is smaller  than expected photoemission cur- 

rents. 

200 e V  to 40 KeV energy range, so that secondary emission is likely to 

be significant in reducing the efficiency of those electrons. 

In addition, these large fluxes were for electrons in the 110 

When the right hand side of this inequality is violated the body will 

become positive: 

(7.10) 

Solutions to (7.10) are shown in Figure 30 for an electron energy spec- 

t rum with two peaks: One at an energy (-500 eV) such that the second- 

a r y  yield is unity, and one at a higher energy where the  yield i s  0.3. 

The potential is limited to a few volts positive a s  the photo- and sec-  ' 

ondary electrons are returned to the body. It was found that when the 

ratio J,/Jp , corresponding to the higher energy flux, exceeded 0.14, 

the potential did not exceed tl volt for the values D f  J1 !Jp shown in the 

figure. 
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In interplanetary space the protons in the solar wind should be taken 

into account, although they contribute only about 10'" amp/cm2,  a factor 

of 10 l e s s  than photoemission. However, their effectiveness is not r e -  

duced much a t  positive potentials a s  is the case for photoemission. 

Electrons in the solar wind apparently have two distinct energies - a n e  

f rom 3-5eV with densities equal to the proton density, and a higher teni- 

perature group (20-58aV) with an order  of magnitude smaller  density. 

The equilibrium negative potential is 

113 

The low temperature values for T,, n,, u- shot Id be used as long as 

the potential is not so negative that the flux of low temperature electrons 

has been reduced to a value less  than that of the more energetic group. 

When this does oCcur the values for T,, n,, a- should be that of the  

more energetic electrons. 

In general one would expect a positive equilibrium potential in  inter-  

planetary space unless the material  of the body is such that photoemis- 

sion is unimportant. Solutions of the following equation: 

(7.12) 

a r e  shown in Figure 31 for values of potential between 0 and t20 vclts. 

The secondary yield has been neglected for  proton energies less  than 

1 KeV, and has been taken to  be 2.0 for the 3KeV protons. The latter 

energy is expected only oceasionally, as after large solar flares. Typ- 

ical values for Q, and J+/Jp are 10 to 100 and 10'1 to 1 respectively. 
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It i s  apparent that a considerable positive potential could devehp. Once 

t?O volts i s  exceeded the secondary electrons cannot escape, and the 

equilibrium potential is simply 

(7.13) 
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CHAPTER VIII 

EQUILLBRIUM POTENTIALS MEASURED ON THE 

EXPLORER ‘VU1 SATELLITE 

1 Description of Experiment. The Explorer VI11 Satellite was launched 

on November 3, 1960, from Cape Canaveral, Florida, into an orbit with 

an inclination to the equator of 50° ,  a perigee of 420 km and an apogee 

of 2300 km. Its primary mission was the direct measurements of elec- 

tron density and temperature, positive ion concentration and mass, and 

the interaction between the vehicle and the ionized atmosphere. To ac- 

complish this mission the following experiments were flown: three cur- 

rent monitors were situated on the satellite equator, two consisting of 

single-grid charged particle traps appropriately biased to measure 

positive ion and electron current densities, and one consisting of an ex- 

posed plate to monitor the total net current. Two electron traps to 

measure electyon density and temperature were mo-inted on the top cone 

of the satellite (see Figure 32); and one ion trap to measure positive 

ion density, temperature and mass was also mounted on the equator. In 

addition, there was an electric field meter mounted on the top surface 

and a radio-frequency plasma impedance probe consisting of two 10 foot 

wires extending outward from the equator along opposite radii. In addi- 

tion to the preceding experiments, there were also two micrometeorite 

experiments and an attitude sensing system consisting of a solar cell 

and a horizon sensor, both mounted on the eqaator. 

The data from the experiments were sent by a 108 Mc telemetry 

system to any of the eleven NASA ground stations within range when 
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the data were obtained. Al l  the instrumentation operated continously 

except the electric field meter which was turned on for two minute 

periods by radio command from the ground. 

The shell of the satellite was made of aluminum and consisted of 

two truncated cones joined a t  the equator by a short  cylinder 30 inches 

in diameter and 6-1/8 inches high. The axis of the satellite was also 

30 inches long, including the 3-inch cylinder a t  the bottom used for con- 

nection to the booster. The total exposed surface a rea  was 2750 i n 2 ,  

which yields an  effective radius for an equivalent sphere of 14.8 inches. 

Shortly after launch the satellite was "de-spun'' to a spin-rate of 

approximately 20 rpm. The celestial co-ordinates of the positive spin- 

axis remained in the region of zero degrees declination and 180' right 

ascension during thz satellite's useful life of five weeks. The data from 

the horizon sensor proved to be difficult to analyze, with the result  that 

there was an uncertainty of about *15" in the spin-axis co-ordinates. 

The angle between the spin axis and the sun was known to remain close 

to 60°. 

A more detailed description of the satellite and the instrumentation 

Some of the results of the experiments which 114 
1s available elsewhere. 

have been reported a r e  measurements of the sheath currents,  including 

the first experimental verification of the induced potential gradient due 

to the satellite's motion in the earth 's  magnetic field;40 the f i rs t  direct  

detection of helium ions in the earth 's  upper atmosphere;" 

diurnal variation of temperature in the upper atmosphere. 

and the 
116 

This investigation is concerned only with the results obtained from 

the si. gle-grid electron trap. A block diagram of the experiment is 

shown in Figure 33, The sensor consists of a grid f lush with the satellite 

skin with a sweep potential varying from -1.2 to f 8  volts and back in 0.4 
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t (seconds) 

Figure 33. Block Diagram of the Electron Trap on Explorer 



sec  a s  shown in the figure inset. Behind this grid is a collector biased 

at t15  volts to remove photoemission and incoming ion current f rom 

the measured collector current. The electrometer employed 100% neg- 

ative feedback to maintain stability against drift and to keep the collector 

at a constant potential independent of the measured current. It was time- 

shared with the ion current monitor and thc ion trap,  each experiment 

being connected for a 30 second period consisting of three 10-second 

intervals on each of three electrometer ranges. Currents f rom 10'' 

amp to 5 X 10'' amp could be measured. 

The principle of the experiment is as follows: as long as the grid 

is negative with respect to the plasma, the current decreases exponen- 

tially with voltage in accordance with Equation (3.2). The slope of the 

straight line obtained when the logarithm of the current is plotted against 

potential is determined by the electron temperature: 

dV kT 

When the grid is positive with respect to the plasma, electrons a r e  

attracted and the current increases at a slower rate  which depends on 

the geometry as well as the electron temperati-re. The potential Vs at 

which this change in ; .haracter of the electron current occurs identifies 

the time when the grid was a t  the same potential a s  the pLisma. Since, 

the measured potential is with respect to the satellite, we identify $s , 

the satellite potential with respect to the plasma, a s  - V,. The electron 

density may be simply computed from the current at that point by the 

relation 
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where t is the electrical  transparency uf the grid (53%), and A is the 

aperture a rea  of 13.0 c m  . 
Theoretically it should ala0 be possible to obtain the satellite poten- 

tial from the shape of the current versus voltage curve obtained from 

the ion trap. '17 Actually, this proved to be quite difficult because of 

the strong dependence of the current on the angle between the 'normal to 

the t rap and the satellite velocity vector. 

2. Experimental Results. Figure 34 shows a typical current-voltage 
--A- 

curve obtained with the electron trap. The circled points were obtained 

with the electrometer in the medium sensitivity range and the c rosses  

with the high sensitivity range. In this case the data from the two ranges 

was obtained 1.5 seconds or one half of a spin period apart. In general, 

the data was chosen to be either a full period apart  o r  very close to- 

gether on either side of the range switching, although this was not always 

possible. Successive points are separated in t ime by about 0.010 sec-  

onds. The currents  below about 2 X loo8 amp were corrected for a 

displacement current effect due to the changing voltage on the grid. 

The char;, teristically linear portion of the curve on this semi-log 

plot with a distinct change in slope at 5.2 X loe7 amp is plainly apparent. 

The following procedure was used to compute the temperature,  density 

and satellite potential: A11 currents  greater than 1% of full scale on the 

low and medium Sensitivity ranges and 1 0 7 ~  of full scale on the high 

sensitivity raf?ra-, but less than the apparent break-point in the slope, 

were  fitted to a straight line by a least-squares calculation. This line 

was plotted and the f i t  to the data was examined at and above the bre ik-  

point to see if points there should be added or subtracted. Then a new 

least-squares calculation was made with the new set of points. This 

process was  repeated until there was no queBtion that the best possible 

110 



10" 

10" 

n 
v) 

2 
P) 

4 
U 

5 
2 10'; 
W 

3 u 

6 ez 
I- 

A w 
2 

lo'€ 

loo9 

FULL SCALE ON MEDIUM SENSITIVITY 
0 0 .  moo 00 00 

13 NOVEMBER, 1960 

" I 1  km Altitude 
------ 5.2$0.3 x 10-7amp n, =5 .4  x 1 0 ~ 1 ~ ~ 3  

T, = 3180" 330' 

FULL SCALE ON HIGH SENSITVITY 'k xx x x  x x  x xx xx x x # 

Arrows Indicate Points Used 
To Compute Slope And Temperature 

} DISPLACEMENT CURRENT CORRECTION 

1 I I  I 1 I I I I I 
-1 0 1 2 3 4 5 6 7 8 -  

GRID POTENTIAL (volts) 

Figure 34. Typical Current-Voltage Curve Obtained 
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estimate of siope ayd break-point had been obtained. The density, sat- 

ellite potential and electron temperature with its standard deviation 

were then computed tram Equations (8.1) and (8.2). 

This procedure was used to compute densities, temperatures and 

satellite potentials f rom some 250 current-voltage curves. The tem- 

peratures and densities obtained on magnetically quiet days (according 

118,119 to the Committee on Characterization of Magnetic Disturbances 

a r e  presented in Figures 35 and 36. The satellite potentials are pre- 

sented in  Figures 37 through 39. The data has been separated according 

1 

to magnetic activity because there was a significant difference in the 

results between magnetically quiet, medium o r  disturbed conditions. 

During a given condition, however, there was no significant difference 

between results on different days that was not obecured by the experi- 

mental scatter. 

It is reasonable to expect atmospheric conditions to stay reasonably 

stable from day to day over the Explorer VI11 orbit  €or a given condition, 

because of the fact that the local mean time was practically a fixed func- 

tion of position in the orbit. Thus, diurnal variations would not appear 

explicitly but would be folded into the variation with altitude in the same 

way from orbit  to orbit. This feature of the or:21t is of course due to 

the fact that the plane of the orbit is fixed in inertial space and conse- . 
quently rotates quite slowly (one degree per day) with respect tb the 

sun. The local mean time shown in Figures 35-39 is for November 20, 

and is hood to within about *l hour over the active life of approximately 

one month. 
c 

For these reasons,  plus a consideration of the sources 06 e r r o r  

in the measurements, i f  is felt that the scatter in the data is 

primarily experimental rather than a reflection of real  geophysical 
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variations. 

perature was about 257c rather than the 117~ of Figure 34. 

measured satellite potential i s  in  turn very sensitive to the meas-  

The typical standard deviation for the measured tem- 

The 

ured slope of the current-voltage curve which determines the position 

of the break. The absolute value of the grid voltage is known within an 

mcertainty of about k0.08 volts. This uncertainty affects the determin- 

ation of 4s 

perature where only the relative voltage is needed. 

more strongly than it affects the determination of the tem- 

The uncertainty in the measured currents  is about 1% of full scale 

for the low and medium sensitivity ranges and 10% for the high sensitiv- 

ity ranges, as indicated previously. 

only this uncertainty but also the uncertaintiee in the temperature and 

in the determination of the break-point. 

.: c ccmputed density reflects not 

Before the measured satellite potentials can be compared with 

theoretical values. the dimensionless potentiai q, = 4Se/kT must be 

computed. The relative e r r o r  in q, is the sum of the relative errors 

in 

the measured satellite potentials with theoretical values could best  be 

done by using a smooth curve of temperature and density over the orbit  

to compute the expected potentials. This way the non-systematic dis-  

crepancies between the measured and predicted values reflect primarily 

andT . Consequently, it was decided that a useful comp.-.rison of 

the scatter in the measured +s alone. The smoothed temperatures 

representing a running mean for the three magnetic conditions are shown 

in Figure 35. These were used both in the theoretical calculation of q 

and in the normalization of the measured 4,. Only the electron density- 

data for  the magnetically quiet days is shown in Figure 36. 
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The following expression was used to compute the expected values 

for 77 : 

In this expression 6 and Y are the reflection coefficient and sec- 

ondary yield for electrons and oxygen ions respectively. Bauer has 

shown that for the high temperatures found here,  oxygen ions will be 

predominant over the whole 'orbit. the 

effective radius of the satellite of 0.37 meters. The quantity (L/k)* is 

used in accordance with the discussion in Section 3.4 on the effect of the 

wake. The term containing p represents the magnetic induction effect 

of Equation (6.3),  and F(R/@) is the ordinate of Figure 17. The c ross  

product of it and 

assumed that the earth 's  magnetic field is a dipole with an axis along 

the earth 's  geographic axis. M is the Mach number, V/a+ ; t (7) 

sheath thickness after Equation (A13) of the appendix; and 4 ,  As , Av , 

are the total a r ea  and the projected areas in the direction of the sun 

and velocity vector respectively. It has been assumed that the ion tem- 

perature is equal to the electron temperature. 

L is the Debye length and 

is a fixed function of position in the orbit i f  it is 

the 

The results of the computations are shown by the lines in F igu res  

37 through 39. The dashed curve is for  a photoemission current density, 

Jp, of 4 X lom9 amp/cm2 and the solid curve for 8 X 10'' amp/cm2.  
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There is reasanable agreement a t  the higher altitudes between the.curves 

and the data points , particularly with the higher photoemission current 

v d u e .  A systematic overestimate of the electron density has the same 

effect. on the predicted potential as an underestimate of photoemission. 

This is a more likely explanation of the better fit of the solid than the 

dashed line. For the disturbed days an even higher values for (J,/n) is 

indicated. 

Below 700 k m  the measured values of q are much more negative 

than is expected. The change in potential due to passage from sunlight 

to darkness is reflected by the change in the curves between 900 and 

1100 krn on ascent and 900 and 700 km on descent, and is not of sufficient 

magnitude to be an explanation. 

It is suggested that the more negative potentials at low altitudes 

are caused by the rf impedance probe experiment on the satellite. This 

probe, consisting of the two 10-foot wires described previously, was 

operated continuously at a frequency of 6.5 Mc. The amplitude of the 

rf voltage was about 0.3 volts. At high altitudes where the electron 

density is low, the local plasma frequency is much lower than 6.5 Mc. 

Consequently, the additional current to the probe due to the rf is negli- 

gible, as is discussed in Section 5.7. A s  the \satellite descends in altitude, 

the plasma frequency increases;  

and as the satellite approaches perigee, the plasma frequency will in” 

general go through the probe frequency. For example, the electron 

density of 106/cm3 occurring a t  425 km in Figure 36 corresponds to a 

plasma frequency of 9 Mc. Thekefore, a very large increase in electron 

120 



current  to the probe results a s  the probe frequency goes through the 

resonant frequency, which drives the whole satellite to a more negative 

potential. 

To put this suggestion on a quantitaiive basis,  it is necessary to 

know the value of the current at the resonant peak and the resonant 

frequency, which is generally somewhat lower than the plasma frequency. 

Whale has shown that resonance occurs for a cylindrical dipole antenna 

at f /a, which yields a resonant frequency of 6.34 Mc for the density of 

l o6  electrons/cm3 at 425 km. 120 At these altitudes the resonant peak 

P 

height is determined by a phase-mixing damping rather than collisional 

damping. 

This mechanism has not yet been studied extensively, but Crawford 

has suggested that the ratio ( A i  / io to ( A i  / i o  ) <e f, is probably 

between 5 and 100 under these conditions in the ionosphere. 12' Figure 

40 illustrates the additional current to a probe a s  a function of f / f p .  

94 This curve was computed from Equation (19) of Harp and Crawford 

with an assumed collision frequency to give a peak current ratio of 20. 

The resonant frequency here is at 0.68 f p  . 
At 425 km for the quiet model, where n,= 1 X l o 6  /cm3,  the in- 

creased current to the probe at f / f p  = ( 6 . 5 / 9 . 0 )  Mc = 0.72 is A i  

where io is the current to the probe with no rf. When this added elec- 

tron current is taken into account in the left-hand side of ( 8 . 3 ) ,  the new 

equilibrium potential, (+,e AT) , is -4.16 rather than -2.1 . This potential 

is indicated by the curve marked (E) in Figure 37. The value of A i / i o  

necessary at 500 km to give the indicated potential of -3.3 is 11.9 where 

f / f  is approximately 1.6. 

= 39 i o  , 

P 

It should be emphasized again that the shape of the resonance curve 

.in Figure 40 is baned on the collisional damping model, which does not 
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apply at these altitudes in  the ionosphere. There is evidence f rom some 

rescjnance probes flown by Japanese experimenters that the resonance 

peak in the ionosphere is much broader. 122 This is  also indicated by 

the Explorer VI11 potential data. In general, the potential begins to go 

more negative between 50!: and 600 km where the electron density is 

near l o5  / c m 3  rather than 106 / cm3,  and hence f / f p  2 2.3. However, 

the fact that this effect depends so strongly upon the electron density 

means that the smoothed model for the density in the computations will 

nst  reproduce the measured potentials closely. 

The curves marked (2) and (3) have been computed by assuming 

that at 425 km the probe frequency is at  the resonant frequency. The 

ratios of ( A i  to (Ai / i o  ),, have been assumed to be 28.5 and 144 

respectively, giving values for (+se/kT) of -4.59 and -6.12. The cor res -  

ponding values for the current ratio at 500 km a r e  13 and 27. 

These calculations show that the current resonance effect a s  the 

plasma frequency approaches the probe frequency can quantitatively 

;.tccount for the negative potentials observed near Explorer VI11 perigee. 

15 is necessary that the resonant peak be broader than what has been 

observed in laboratory work; but following the indications of the Japanese 

experiments, it is suggested that the resonant effect is broader a t  low 

neutral particle densities where collisional damping does not occur. 

3. c- Conclusions. 

results. The first is that there is general agreement between the pre- 

dicted values of equilibrium potential and the measured values. There- 

fore, the various mechanism of charge collection that have been dis- 

Two major conclusions may be drawn from these 

+ 

cussed have been evaluated correctly a s  far as their importance for 

Explorer VI11 is concerned. Further,  no important mechanisms have 

been omitted. 
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The second conclusion ie that much more experimental work re- 

maina to be done, An order  of magnitude improvement in the accuracy 

of satellite potential measurement is requiped. And to evaluate the 

several  charge collection mechanisms, precise meaeurements of the 

environmental plasma proper;ies a r e  required simultaneously, If further 

experimental study of satellite potential is warranted, it should prefer- 

ably be a satellite designed primarily to that end. This way both the 

surface characterist ics and the geometry ob the satellite may be designed 

with their effect on equilibrium potential in mind. Any feasible experi- 

ments that will contribute to an understanding of the potential should be 

included, and they should be carefully designed eo that any effects they 

might have on the potential themselves can be controlled. 

Several a r eas  of further laboratory investigation are also indicated 

by this study. Much work needs to be done on photoemission yields of 

materials in the ultra-violet wavelengths. The yields of aluminum 

especially need to be verified for  various surface conditions. Magnesium 

should be investigated, and also dielectric materials such as mylar that 

a r e  often used on satellite surfaces. Work is also needed on the sec- 

ondary yields for ion impacts, especially in the energy range from 1 to 

10 KeV. 

The theory presented in Chapter VI on the effect of a magnetic field 

on the collection of electrons is a subject that could easily be pursued 

in  the laboratory, although the extension to the case where electric fields 

a re  present wil l  undoubtedly be very difficult. - 
Finally, the radio-frequency resonance phenomenon a t  low pressures  

ne\s.;u study both experimentally and theoretically. It may be that the 

best place to pursue this experimentally would be from a satellite where 

wall-effects can be avoided, and where probea large compared to the 

Debye length can be employed. 
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APPENDIX A 

ION CURRENT TO A NEGATIVELY -CHARGED 

h4OVINC SPHERE 

Poisson's equation in spherical coordinates with the space 2harge 

given by Equation (3.15) may be written 

where y is the normalized potential, 

and x the radial distance normalized to the Debye length. 

Solutions to this equation subject to the boundary condition that 

y -. 0 as x -. are plotted in Figure A l .  It should be noted that the 

solution co-tresponding to any interior boundary condition defined by the 

pair  of values (xo , yo ), the potential o the sphere of radius ro , is des- 

cribed external to xo by the single curve on which xo yo lie. 

The approximation made in assuming Equation (3.15) for the space 

charge is that the ion density is undisturbed, and o d y  the electrons 

respond 20 the field in accordance with the Holtzmann factor. Thus, 

this equation applies to the case where the  body's speed is much larger  

than the ion thermal velocity. In the satellite coordinate system the 

ions are approaching with uniform speed f rom one direction. All those 

with impact parameters  less than a certain value will be collected. 

Walker in hie thesis 38 has shown that is is possible to compute this 

impact parameter  f rom consideration of the conservation of energy and 

angular momentum without actually obtaining the particle trajectories. 
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RADIAL DISTANCE, x =: r/L - 

Figure Al .  The Potential in Front of a Negatively-Charged Moving 

Sphere; Contours of the Minimum Distance of Closest Approach are 

also Shown for Various Ion Energies 
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Following his discussion, but generalizing to any functional form 

for the potential (as long as it decreases monotonically), rather than 

restricting ourselves to a power law as he does, we define the pitch 

angle Q as the angle between the particle velocity vector and the radius 

vector. The pitch angle at any point for a particle with impact param- 

eter b and initial velocity V is given by 

b s i n  a = 

where is the value of the potential at the point r . 
W e  divide all trajectories into two classes: periastron trajectories 

are followed by particles which would have ( i f  there were no absorbing 

surface) a distance of closest  apprcach, rmin , corresponding to the value 

of r where a = n / 2 .  Pericritical trajectories are orbits which spiral 

in towards the origin with a never reaching n / 2 .  Such trajectories can 

only exist if the potential falls off more strongly than r2. This can be 

seen from Equation (A3) where sin a always increases as r decreases 

along a trajectory unless 4 falls off faster than r-? In this case s in  a 

may have a maximum value less than n/2. 

For a given initial kinetic energys ions with large b will always 

describe periastron orbits. If pericri t ical  orbits exist then there will 

be some minimum impact parameter for  which a may equal n / 2 .  Al- 

ternately, there is some minimum distance of closest  approach, r , at 

which a particle may ar r ive  and still escape. To find this we differentiate 

e 

mV2 
= fmin 
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with respect to rmin, and find that re is defined by the point where 

Since 112 mV2 = 112 m$t&e, this equation describes the surface where 

the centripetal acceleration is equal to the centrifugal force pez unit 

mass, and it is clear why particles that cross the surface rc will be 

accelerated towards the origin. 

The corresponding critical impact parameter, b, a which divides 

periastron from pericritical trajectories is given by 

or 

in terms of normalized quantities, where u = mVz /2kT. 

The program which computed solutions to Equation (Al)  also tab- 

ulated along with each solution the value of u for a series of values of 

xF in accordance with Equation (AS). The corresponding values of Xbe 

were also tabulated. Some of these resultsr a re  also shown in Figure 

A1 in the form of contours of the distance x, €or a constant initial 

energy u .  It is apparent that in general each solution to (AI)  has two 

points where Equation (A5) is satisfied. What this means physically can 
e 

be seen from Figures A2 and A3. In these figures the equivalent one- 

dimensional potential, Y(x) , ie plotted againrt x , where Y(x) is givcnby 
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(See, for  example, Goldstein's discussion of the "fictitious potential" 

for  a two-body central  force problem).la3 It is clear f rom the figures that 

true pericri t ical  trajectories cannot exist because of the repulsive cen- 

trifugal ba r r i e r  which always dominates the potential at small  values 

of X .  It is also generally t rue that the repulsive centrifugal ba r r i e r  

dominates at  large values of x because of the charge on the body by the 

sheath. However, there may still be a potential wel l  at intermediate 

values of X .  If a particle is to penetrate into this region it must have 

at least  an energy equal to the maximum hei-\t of the ba r r i e r  outside 

the well. 

The distance of closest  approach of a particle is the largest  value 

of x in Figure A2 for which the equivalent potential c rosses  the hori- 

zontal straight line corresponding to the particle energy. It is clear ,  

then, that the cri t ical  impact parameter,  xbt , describes the case when 

the equivalent potential is just tangent to the particle energy line a t  the 

ba r r i e r  maximum outside the well. The cri t ical  radius, xC,  which de- 

scribes the turning point thus has two values. One is a t  the position of 

the bar r ie r  maximum and the others is the inner turning point - i.e., 

the boundaries of region B. Whether o r  not a particle is collected by 

the body depends on the relation of the body's radius to the position of 

the turning point. Particles with impact parameters greater than xbc , 

the critical impact parameter,  will be reflected at the outer centrifugal 

bar r ie r ,  while particles with impact parameters less  than xbc will come 

on in to be reflected at the inner barrier. 

Three cases may be distinguished corresponding to which of thk 

three regions A, B or  C contains the body's radius x o .  If xo is in r e -  

gion A, a grazing trajectory exists for an impact parameter xu less 

than xbc I and is given by Equation (A4), 
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If xo is in region B, a grazing trajectory does not exist (except for 

trapped particles). A l l  particles with impact parameters  less than xbc 

will spiral  in and be collected so that the impact parameter for collec- 

tion is xbc . In region C grazing orbits again exist and the impact param- 

eter for collection is again x of Equation (AS). The rules for collection 
0 

may be summarized as follows: If xo xbc e xg a use xbc to compute 

the effective cross-section; otherwise use x . The resulting current-  

voltage curves for various combinations of x,, and u a r e  shown in 

Figure 4 of Chapter 111. 

0 

These rules depend on the fact that the various equivalent potential 

curves for a given u and ( x,,, yo ), but for various values of xb , do not 

intersect. This can easily be verified by forming the difference yl(x) -y2(x) 

= u / x *  (XEI - x i 2 )  > 0 for all x , where xbl > xb2. 

Figv.re A3 illustrates how the current to a body changes a s  the po- 

tential is increased. At  small potentials corresponding to the uppermost 

curve the effective cross-section is nx: , which increased linearly with 

the potential. As  the potential increases a well forms which increases 

in width and depth, so that eventually xo moves into and remains in 

region B. The current is then 

which increases more slowly with the potential. Again, it is necessary 

that the various curves for  a given u and xb but for various solutions 

to ( A l )  do not intersect. This may be verified by formingY,(x) - Y 2 ( x )  = 

y, ( x )  - y,(x).  Since the solutions y shown in Figure A1 do not inter-  

sect  this is true of the equivalent potentials as well, 
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Following Gringaue, we may define xbc a s  the sheath radius. For 

large bodies we may make use of this analysis to derive an analytic 

expression for the sheath radius which may be used in Equations (A9) 

o r  (3.13). 

For  large bodies the second te rm on the  left of Equation ( A l )  may 

be neglected, and the right-hand side may be linearized in accordance 

with the discussion of Section 2 of Chapter I. The solution is then simply 

and the condition for xc is 

' ( " c  0 x 0  1 U (1 - 4 2 )  = - - 
YO 

e 

To a first approximation x, - xo is given by 

x, o x o  = In (q) 
for 

(g) 1 

and the sheath thickness t by 

- E 1: = XbC - xo = 1 .t +7; 1" (F) 

The e r r o r  in this approximation increases with increasing $,, and de- 

creasing x O 0  However a comparison with the computer solution for the 

case where xo = 23 and inV2/2kT = 5 indicated that the approximate 

., 

133 



value for t of (A12) was in error by l e s s  than I%, 10% and 2570 for 

values for (-&p/kT) 

the computed current will be sti l l  less, by a factor of about (2t /r,,). 

of 1.0, 2.4, and 4.7 respectively. The error in 
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APPENDIX B' 

SUMMARY 

A body in the upper atmosphere o r  in  space wil l  acquire an electric 

charge through various mechanisms such a s  impacts by ions and elec- 

trons o r  electron emission. The charge on a body influences i ts  rate of 

charging with the result  that an equilibrium charge, o r  potential, is 

reached such that the net current to the body vanishes. Knowledge of 

the equilibrium potential of a body in space is needed to determine the 

motionof micrometeorites,  the dragonearth ,atellites, and to assess  the 

behavior of certain experiments on satellites. The various treatments 

of the problem in the l i terature have generally been restricted to a 

consideration of only a few charging mechanisms. Little data has been 

obtained, and in no case have the measurements been analyzed in terms 

of the expected potential with an evaluation of a l l  the possible charging 

mechanisms . 
The collection of ions and electrons from the environmental plasma 

a s  a function of potential depends upon the body's size, shape, and ve- 

locity. The appropriate equations for ion and electron currents to a 

sphere a r e  available in the l i terature for bodies small  compared to a 
& 

Debye length. For  large bodies, an estimate of the influence of the 

plasma sheath is required to determine the current in an attractive 

field. Walker's estimate of sheath thickness is used for bodies with 

velocities small to the charged particle thermal velocity.' Poisson's 

equation has been solved numerically for high-velocity spheres,  and- the 

ion current obtained by an analysis of the ion's distance of closest ap- 

proach. A negative space charge is formed in the wake behind such a 

body which reduces thi? electron current. 
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Photoemission is an important charging mechanism for bodies' in 

sunlight. Measurements of photoelectric yields in the near and far 

ultraviolet for aluminum and tungsten a r e  reviewed and compared with 

photocurrents measured above the atmosphere. A photocurrent density 

near 4 X amp/drn2 is indicated for both materials.  Secondary 

electron emission upon energetic ion or electron impact may also be 

an important charging mechanism, especially in the earth 's  radiation 

belts. Secondary yields taking into account yeflection and primary 

back-diffusion a r e  presented for electrons and for ions for energies 

up to 10 MeV. 

There a r e  several  other charging mechanisms that in general may 

be neglected except possibly in special circumstances. These include 

the effects of cosmic rays,  radioactivity, thermionic and field emission, 

collisions with dust grains,  and the influence of radio-frequency electric 

iields. A magnetic field can affect the equilibrium potential of a body 

J.n two ways: the motion of the body through the field induces a potential 

gradient which results in an increased electron current;  in addition, the 

restriction of the electron to a spiralling motion along the field line 

decreases the effective collection a rea  of the body. Expressions de- 

scribing this latter effect a r e  derived for both cylinders and spheres. 

These charging mechanisms a r e  evaluated for conditions in the 

upper atmosphere and in interplanetary space, and are combined into ' 

expressions from which the equilibrium potential may be determined. 

In the ionosphere where electron densities are relatively high, the equi- 

librium potential is kypically a few tenths of a volt negative. The im#- 

portant mechanietns a r e  environmental ion and electron collection. The 

energetic particles in the earth 's  radiation belts have a negligible effect 
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2 except for  the large fluxes of 5 KeV protons observed by Freeman and 

tht; 100 KeV protons beyond 2 earth radio observed by Davis and Wiiliarn- 

son. 

in the sunlight as photoemission predornina tes over positive ion collection. 

3 
At higher altitudes the equilibrium potential may become positive 

In the ear th 's  magnetosphere where electron densities a r e  low, large 

energetic particle fluxes may occur. The poter,tfal is sensitive to the 

ratio of electron flux to photoemission, and may vary widely. Positive 

values, which a r e  more  likely, are limited to a few volts, but large neg- 

ative values are possible for large energetic electron fluxes. In inter- 

planetary space positive potelitials due to both photoemission and the 

solar wind protons a r e  expected, unless the mater ia l  is  such :hat photo- 

emission is unimportant. 

The equilibrium potential of the satellite Explorer VI11 has been 

measured between the altitudes of 420 and 2300 km in both darkness 

and sunlight by means of an electron t rap  experiment. The results are 

compared with expected values calculated from the expressions derived 

ear l ier  for equilibrium potential. The calculations include magnetic 

field effects and photoemission, i n d  make use of si.multaneous measure- 

ments of the plasma density and temperature. Although there is con- 

siderable scatter to the experimental potentials, there is general agree - 
ment at higher altitudes with perhaps a la rger  photocurrent of about 

8 X 10'' ampicm2 indicated. At low altitudes the measured potentials 

are more negative than anticipated. This is attributed to the effect of 

a radio-frequency plasma impedance experiment carr ied on the satellite. 

It is shown that near  satellite perigee where the plasma frequency "p- 

proaches the probe frequency of 6.5 Mc, the  resonant increase of elec- 

tron current to the probe can quantitatively account for the more nega- 

tive potentials . 

* 
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